Flying without Paper Charts

I recently gave a presentation about flying RNAV procedures at the Northwest Aviation Conference. As usual, I asked how many pilots in the audience were using tablets like iPads in the cockpit. Most of the folks raised their hands. It’s astonishing how quickly the aviation community has adopted this technology.

Nevertheless, questions persist about the legality of “going paperless” in the cockpit, at least for typical GA pilots operating light aircraft under 14 CFR Part 91. Here are some key references to help you understand the rules and good operating practices.

The best background is in AC 91-78-Use of Class 1 or Class 2 Electronic Flight Bag (EFB), which explains:

This advisory circular (AC) provides aircraft owners, operators, and pilots operating aircraft under Title 14 of the Code of Federal Regulations (14 CFR) part 91, with information for removal of paper aeronautical charts and other documentation from the cockpit through the use of either portable or installed cockpit displays (electronic flight bags (EFB).

The AC also notes:

This AC is applicable to instrument flight rules (IFR) or visual flight rules (VFR), preflight, flight, and post flight operations conducted under part 91, unless prohibited by a specific section of 14 CFR chapter I.

And it explains:

EFB systems may be used in conjunction with, or to replace, some of the paper reference material that pilots typically carry in the cockpit. EFBs can electronically store and retrieve information required for flight operations, such as the POH and supplements, minimum equipment lists, weight and balance calculations, aeronautical charts and terminal procedures…The in-flight use of an EFB/ECD in lieu of paper reference material is the decision of the aircraft operator and the pilot in command. Any Type A or Type B EFB application, as defined in [AC 120-76] may be substituted for the paper equivalent. It requires no formal operational approval as long as the guidelines of this AC are followed.

You can find further guidance on the FAA website here. And Sporty’s has a good overview of the topic here. For information about using iPads and the like on practical tests, see this item at AOPA.

If you fly IFR using an approved GPS navigation system, you can find additional guidance (and common sense advice) in documents such as the Operational Suitability Report for the Garmin GTN series navigators, published by the FAA in 2011, and available in the FSIMS system, here.

The following Type B applications were evaluated under this report:

(1) Chart capability is limited to Approach Charts, Standard Terminal Arrival Routes, Departure Procedures and Airport Diagrams. Access to the chart information is accomplished by touching the chart symbol on the screen home page. Scaling is accomplished by touching the plus or minus signs on the screen. Chart information is in standard chart layout, oriented in portrait view. It is possible to overlay an approach chart on the navigation display. Navigation Display Approach Chart overlays however, are always oriented so that North on the chart is at the top of the display. Caution should be taken when using this feature, as it can be confusing in some circumstances.

(2) En route charts are not available to view in the GTN 7XX series of units. Airways and associated navigation aids and intersection names are displayed on the navigation display but not in chart format. Because en route chart view is not available, operators will be required to have immediately accessible a suitable approved aeronautical information source of en route charts.

A typical installation includes a GTN 7XX paired with a GTN6XX. Since the GTN6XX series of navigator does not have chart capability a second GTN7XX with charts and an independent power source may be installed to provide the necessary backup. Another method of redundancy could be for the operator to carry an approved stand alone Class I, or Class II EFB device onboard the aircraft. Otherwise, a set of paper charts is required to provide chart redundancy.

In the case of a single unit installation, paper charts (including approach, departure and arrival procedure, airport diagram and en route charts) must be onboard the aircraft or an approved stand alone Class I, or Class II (with a suitable approved source of aeronautical data) device may be substituted for paper charts.

Stand-Alone DMEs on Charts

As the FAA moves ahead it with its plans to decommission about one-third of the existing network of VORs in the continental U.S. (for more information, see Another Update on VOR Decommissioning and its related posts), a new type of navaid–a stand-alone DME facility–is appearing on aeronautical charts.

Here’s an example southwest of Las Vegas, NV. Note the identification and frequency box for the GOODSPRINGS DME (GOG). The site of the transmitter is shown by the small blue box indicated by the red arrow.

GoodspringsDME.jpg

Here’s the same facility on a low-altitude IFR chart:

GoodspringsDME-IFR.jpg

You can read more about these stand-alone DME facilities in DME Facilities – Charting and MAGVAR Issues (PDF), which describes the discussions of the Aeronautical Charting Forum, an FAA-industry group.

These stand-alone DMEs are primarily for use by aircraft with DME-DME area navigation equipment, and in many cases, they are left over when the VORs they were associated with are shut down. Where necessary, new DMEs will be added to support RNAV procedures based on DME-DME as an alternative to GPS. As you can see from the chart, these DMEs do not provide azimuth (course) information like a VOR-DME or VORTAC. They are simply DMEs.

If, like most IFR pilots flying typical GA aircraft, you use GPS as your primary navigation source, these charted stand-alone DMEs are of most interest as fixes that you can include in a route or flight plan. If you still have a DME receiver in your airplane, you can tune, identify, and reference these DMEs as you fly.

ATC Telephone Numbers for IFR Clearances

The FAA has announced that it will publish telephone numbers for some ATC facilities that provide IFR clearances and cancellations of IFR flight plans via the phone in the Chart Supplement (formerly known as the A/FD). FAA planned to begin implementation of the change on October 1, 2016 and complete the process by June 30, 2017.

The basic information was provided in a recommendation document (ACF-CG RD 16-020309) at the Aeronautical Charting Forum, which reads in part:

Subject: Publication of approach control phone numbers for purposes of Clearance
Delivery and/or IFR flight plan cancellation.

Background/Discussion: In accordance with the Administrator’s NAS Efficient Streamlined Services Initiative Air Traffic, Flight Service, and NATCA have agreed that air traffic facilities currently providing clearances to pilots via telephone (informally) will have their numbers published in the appropriate Chart Supplement, US. These same facilities will have the option to have a separate phone line installed for IFR flight plan cancellations, which will also be published. The attached Policy Decision Memorandum identifies the affected 32 Air Traffic facilities and reflects approval by VP System Operations, VP Air Traffic Services, and VP Technical Operations. Also attached are the Scoping Document Workgroup Agreement, Safety Risk Management Document, and Implementation Plan.

Recommendations: Publish the approach control phone numbers for Clearance Delivery and/or IFR flight plan cancellation in the Chart Supplement US, for example:

For CLNC DEL CTC BOSTON APCH (603) 594-5551

And, when available, for those facilities with the IFR cancellation line

To CANCEL IFR CTC BOSTON APCH (603) 594-5552

The official FAA memoranda that describe the details are attached to the recommendation documented linked above.

The list of TRACONs and towers (subject to revision) that will issue clearances directly to pilots via telephone includes:

  1. A90 -Boston
  2. C90 – Chicago
  3. Dl O -Dallas-Fort Worth
  4. D21 – Detroit
  5. F 11 – Central Florida
  6. 190 – Houston
  7. L30 – Las Vegas
  8. M03 – Memphis
  9. N90 -New York
  10. NCT -Northem California
  11. P80 – Portland
  12. R90 – Omaha
  13. S46 – Seattle
  14. S56 – Salt Lake
  15. T75 – Louis
  16. U90 -Tucson
  17. Y90 – Yankee
  18. ABE – Allentown, PA
  19. AUS -Austin, TX
  20. AVP – Scranton, PA
  21. ENA -Nashville, TN
  22. CLT – Charlotte,NC
  23. CRP – Corpus Christie, TX
  24. DAB -Daytona, FL
  25. IND – Indianapolis, IN
  26. MCI -Kansas City, MO
  27. MDT -Harrisburg, PA
  28. MSY -New Orleans, LA
  29. ORF -Norfolk, VA
  30. PHL – Philadelphia, PA
  31. SAT – San Antonia, TX
  32. PCT – Potomac, VA

Latest Info on VOR Shutdowns

The FAA recently provided an update on its plans to decommission about 30 percent (308) of the existing network of 957 VORs by 2025. The presentation, made at the April 2016 meeting of the Aeronautical Charting Forum, is available here (PDF).

Some highlights:

As I’ve noted in previous posts on this topic (e.g., here), the basic plan remains as follows:

  • Decommission about 308 VORs in two phases. Phase 1 runs from FY2016-FY2020. Phase 2 runs from FY2021-FY2025.
  • About 649 VORs will remain in service. In fact, many of those VORs will be upgraded to expand their service volumes.
  • Most of the VORs to be shut down will be in the Central (162) and Eastern (131) U.S. Only about 15 VORs will be decommissioned in the West.

The list of the first VORs to be shut down is available from AOPA here (PDF). AOPA also has good background about the program to decommission VORs on its website.

To provide backups should GPS signals fail or be disrupted, the FAA will retain a minimum operational network (MON) of VORs and MON airports that have ILS and/or VOR approaches.

Those MON airports and VORs are designed to enable pilots to:

  • Revert from PBN [i.e., GPS-based] to conventional navigation in the event of a Global Positioning System (GPS) outage;
  • Tune and identify a VOR at a minimum altitude of 5,000 feet above ground level or higher;
  • Navigate to a MON airport within 100 nautical miles to fly an Instrument Landing System (ILS) or VOR instrument approach without Distance Measuring Equipment (DME), Automatic Direction Finder (ADF), surveillance, or GPS where the capability currently exists; and
  • Navigate along VOR Airways especially in mountainous terrain where surveillance services are not available and Minimum En Route Altitudes (MEAs) offer lower altitude selection for options in icing conditions.

You can learn more about MON airports in this presentation (PDF) from the ACF meeting.

Use of IFR GPS on Conventional Approaches

FAA has published an update to the AIM, effective 26 May 2016, and it includes a big change if you have an IFR-approved GPS [i.e., a “suitable navigation system” as defined in AC 20-138 and AIM 1-2-3 (b).]

Now, if you fly a conventional approach based on a VOR or NDB (but not a localizer), you can fly the procedure entirely with the GPS, provided you can monitor (using a separate CDI or a bearing pointer) the VOR or NDB facility specified for the approach.

The new language is in section 1−2−3. Use of Suitable Area Navigation (RNAV) Systems on Conventional Procedures and Routes.

The summary of changes to this AIM update notes that:

This change allows for the use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure (IAP) based on a VOR, TACAN, or NDB signal. The underlying NAVAID must be operational and monitored for the final segment course alignment.

The new text in the AIM is in paragraph 5 of AIM 1-2-3:

5. Use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure based on a VOR, TACAN or NDB signal, is allowable. The underlying NAVAID must be operational and the NAVAID monitored for final segment course alignment.

This change is the result of a discussion at the Aeronautical Charting Forum in 2014.

Changes in AIM Effective 26 May 2016

FAA has published an update to the AIM, effective 26 May 2016, and it includes several important changes of interest to typical general-aviation pilots:

1−2−3. Use of Suitable Area Navigation (RNAV) Systems on Conventional Procedures
and Routes

This change allows for the use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure (IAP) based on a VOR, TACAN, or NDB signal. The underlying NAVAID must be operational and monitored for the final segment course alignment. [For more information about this item, see the detailed discussion here.]

3−2−3. Class B Airspace
This change adds an RNAV Receiver as an option for instrument flight rule (IFR) navigation requirement IAW 91.131 (c)(1).

3−2−6. Class E Airspace

This change updates the definition, vertical limits, and types of Class E airspace. The change more accurately reflects Class E airspace regulatory information in 14 CFR Part 71 and more clearly states that Class E arrival extensions have the same effective times as the airport surface area airspace….

4−3−22. Option Approach
This changes adds verbiage advising pilots to inform air traffic control (ATC) as soon as possible of any delay clearing the runway during their stop−and−go or full stop landing.

5−2−8. Instrument Departure Procedures (DP) − Obstacle Departure Procedures (ODP) and Standard Instrument Departures (SID)
This change adds language advising pilots what to expect when vectored or cleared to deviate off of an SID.

5−4−1. Standard Terminal Arrival (STAR) Procedures
This change adds language advising pilots what to expect when vectored or cleared to deviate off of a STAR. Pilots should consider the STAR cancelled. If the clearance included crossing restrictions, controllers will issue an altitude to maintain. It also adds language advising pilots when to be prepared to resume the procedure. Since all clearances on STARS will not include Descend Via clearances, the word “will” was replaced with “may.”

5−4−7. Instrument Approach Procedures
This change adds a note to provide guidance to pilots regarding what to expect when clearances are issued by ATC to altitudes below those published on IAPs.

Garmin GTN Avionics and RF Legs

The release of updated operating software for Garmin GTN-series avionics brings new capabilities to many typical general aviation pilots who fly under IFR. One of the new features is the ability to fly curved radius-to-fix (RF) legs on some instrument approaches.

image.png

Until recently, RF legs were published only on so-called RNP procedures with authorization required (AR) restrictions (for more information, see AIM 5−4−18: RNP AR Instrument Approach Procedures). But FAA has started publishing some approaches with RF legs (like the example above) that are not designated as RNP AR procedures. And, with some limitations, pilots who fly aircraft equipped with GTN-series avionics should be able to fly the RF legs used as transitions/feeder routes on those approaches. (Note that so far, these approaches don’t require RF capability–conventional transitions/feeder routes and/or radar vectors are also available.)

For more information about RF legs, see RNP Procedures and Typical Part 91 Pilots and Garmin Radius to Fix Leg Project Report here at BruceAir. For additional background on GPS navigation and RNP procedures, see also Updated AC 90-105A.

The revised STC for the GTN series (document 190-01007-A5) notes that:

GPS/SBAS TSO-C146c Class 3 Operation
…The Garmin GNSS navigation system complies with the equipment requirements of AC 90-105 and meets the equipment performance and functional requirements to conduct RNP terminal departure and arrival procedures and RNP approach procedures including procedures with RF legs subject to the limitations herein [emphasis added].

Sections 2.12 RF Legs and 2.13.1 RNP 1.0 RF Leg Types of the STC add the following information:

2.12 RF Legs
This STC does not grant operational approval for RF leg navigation for those operators requiring operational approval. Additional FAA approval may be required for those aircraft intending to use the GTN as a means to provide RNP 1 navigation in accordance with FAA Advisory Circular AC 90-105. [Note that per AC 90-105A, domestic Part 91 operations do not require additional approval–only Part 91 subpart K operations and commercial operations need LOAs or the equivalent FAA approval.]

The following limitations apply to procedures with RF legs:

  • Aircraft is limited to 180 KIAS while on the RF leg
  • RF legs are limited to RNP 1 procedures. RNP AR and RNP <1 are not approved
  • Primary navigation guidance on RF legs must be shown on an EHSI indicator with auto-slew capability turned ON
  • GTN Moving Map, EHSI Map, or Distance to Next Waypoint information must be displayed to the pilot during the RF leg when flying without the aid of the autopilot or flight director.
  • The active waypoint must be displayed in the pilot’s primary field of view…

2.13.1 RNP 1.0 RF Leg Types
AC 90-105 states that procedures with RF legs must be flown using either a flight director or coupled to the autopilot.

This STC has demonstrated acceptable crew workload and Flight Technical Error for hand flown procedures with RF legs when the GTN installation complies with limitation set forth in Section 2.12 of this document. It is recommended to couple the autopilot for RF procedures, if available, but it is not required to do so. See section 4.5 of this manual to determine if this capability is supported in this installation.

At present, only a few non-AR approaches with RF legs meet the criteria in the STC and AC 90-105A. But RF legs could become more common on “standard” procedures to provide paths that offer better noise abatement, reduce airspace conflicts, and improve ATC efficiency, and pilots flying with GTN avionics (or similar navigators offered by other manufacturers) will be able to fly those procedures.