An ILS that Requires GPS

You can still fly IFR in the U.S. without an IFR-approved GNSS (i.e., GPS), but being “slant G” (/G in the soon-to-be obsolete FAA domestic flight plan format) increasingly offers advantages, even if you fly only conventional procedures based on ground navaids. And sometimes an IFR-approved GNSS is required to fly even an ILS.

Consider the ILS Z OR LOC Z RWY 16R approach at Reno/Tahoe International Airport (KRNO). This procedure is not an Authorization Required approach–RNP doesn’t appear in the title, and you won’t find that restrictive note on the chart. (For more information about RNP procedures, see RNP Procedures and Typical Part 91 Pilots.)

KRNO-ILSorLOCZRwy16R

But the equipment required notes for this ILS approach include “RNAV-1 GPS required.”

KRNO-ILSorLOCZRwy16R-notes
A review of the plan view and missed approach track show why GPS is necessary to fly this procedure.

KRNO-ILSorLOCZRwy16R-Plan

First, you need GPS to fly transitions from most of initial fixes, which are RNAV waypoints marked by a star symbol.

RNAV-Waypoint-Symbol

Only LIBGE, directly north of the runway, is a non-RNAV IAF.

For example, HOBOA, KLOCK, BELBE, and WINRZ are all RNAV waypoints that serve as IAFs or IFs. Now, NORCAL Approach might provide vectors to the final approach course, but if you want to fly this procedure you should be prepared for a clearance direct to one of those fixes (see Avoiding the Vectors-to-Final Scramble).

Note also that entire missed approach track requires use of GNSS.

Two of the transitions are of special note. The “arcs” that begin at ZONBI and SLABS are radius-to-fix (RF) legs that are part of the transitions that begin at HOBOA and KLOCK. Each of those fixes is distinguished by the notes “RNP-1 GPS REQD” and “RF REQD.”

The first note means that your GPS must meet the RNP 1 standard, which is used for terminal procedures such as SIDs and STARs, the initial phases of approaches, and missed-approach segments. (For more information about RNP, see RNP Procedures and Typical Part 91 Pilots.)

Until recently, RF legs were included only in Authorization Required (AR) procedures. But as I explained in Garmin GTN Avionics and RF Legs, certain RF legs are now available if you have an appropriate GNSS navigator, updated system software, an electronic HSI, and other equipment. Some limitations on flying such RFs also apply, as described in that earlier post.

Suppose that you choose the less intimidating ILS X or LOC X RWY 16R to the same runway. A review of the notes and the plan view shows that even this conventional-looking ILS also requires RNAV 1 GPS, both to fly the transition from WINRZ and the missed approach track.

KRNO-ILSorLOCXRwy16R.jpg

 

Advertisements

Clearances to GNSS Equipped Aircraft Below the MEA

FAA recently updated Air Traffic Control (JO 7110.65W) to allow IFR clearances to GNSS (i.e., GPS) equipped aircraft on airways below the published minimum en route altitude.

N JO 7110.741, published on September 25, 2017 (now incorporated in Air Traffic Control paragraph 4-5-6), explained that:

This notice…allow[s] IFR certified Global Navigation Satellite System (GNSS) equipped aircraft to be cleared below published Minimum En Route Altitudes (MEA)…

The notice explained that:

MEAs are based in part on ground-based navigational aid reception. The advent of satellite technology provides the opportunity for lower minimum altitudes along certain airways, allowing more altitudes to be usable for more aircraft. This change will facilitate IFR certified GNSS equipped aircraft to fly below published MEAs, but no lower than Minimum Obstruction Clearance Altitudes, Minimum IFR Altitudes, or Minimum Vectoring Altitudes, regardless of radar coverage. This would apply to all applicable airways, rather than being limited to those published with GNSS MEA minimums.

Note that the rule (in 14 CFR §91.177 Minimum altitudes for IFR operations) about flying at the MOCA  when you are using VORs still applies:

For aircraft using VOR, VORTAC or TACAN for navigation, this [i.e., flying at the MOCA] applies only within 22 miles of that NAVAID.

The low-altitude en route chart below points out examples of MEAs and MOCAs. (Click here to see the chart at SkyVector.com.)

MEA-MOCA

For example, along a segment of V187 between MOG and MSO, the MEA is 13000. The MOCA is 9900. There is no published GPS MEA (which would appear in blue with a G appended to the altitude). But if you are flying with an IFR-approved GPS, ATC could clear you to 9900, if, for example, you encountered ice.

Similarly, along V120 east of MLP, the MEA is 13000 and the MOCA is 9600, potentially giving you more than 3000 feet to work with if necessary.

Note, however, that not all airway segments have published MOCAs. For example, the only published IFR altitude between PUW and MLP is the MEA of 9100. You still might be cleared below that MEA if ATC has a lower minimum IFR altitudes or minimum vectoring altitudes available in that area, but those altitudes are not typically published on charts that pilots use.* You would just ask for a lower altitude, and the controller could clear you to the appropriate MVA or MIA.

The updated FAA handbook specifically notes that controllers may clear you to an MVA or MIA, but they must also issue lost communications instructions:

(a) In the absence of a published MOCA, assign altitudes at or above the MVA or MIA along the route of flight, and

(b) Lost communications instructions are issued.


*You can download MVA and MIA charts as PDFs from the FAA website, here. But at present, these charts are not available in a format that allows for easy integration with apps that pilots typically use or straightforward comparison with other aviation charts.

FAA Proposes Cuts to Circling Approach Minimums

The FAA has announced the early stages of plan to evaluate and then cut the number of circling minimums published for instrument approaches. According to a notice in the Federal Register on October 6, 2017:

In early 2015, the FAA requested the RTCA’s Tactical Operations Committee (TOC) with providing feedback and recommendations on criteria and processes for cancelling instrument flight procedures. Among the many recommendations provided by the TOC were criteria on how to identify circling procedures that would qualify as candidates for cancellation. As of the beginning of 2017, there are approximately 12,000 IAPs in publication, and there were nearly 10,600 circling lines of minima. Circling procedures account for approximately one-third of all lines of minima in the NAS.

In its continued effort to right-size the NAS through optimization and elimination of redundant and unnecessary IAPs, the FAA proposes the following criteria to guide the identification and selection of appropriate circling procedures to be considered for cancellation…

Proposed Policy

All circling procedures will continue to be reviewed through the established IAP periodic review process.As part of that review process, the FAA is proposing that each circling procedure would be evaluated against the following questions:

—Is this the only IAP at the airport?

—Is this procedure a designated MON airport procedure?

—If multiple IAPs serve a single runway end, is this the lowest circling minima for that runway? Note: If the RNAV circling minima is not the lowest, but is within 50′ of the lowest, the FAA would give the RNAV preference.

—Would cancellation result in removal of circling minima from all conventional NAVAID procedures at an airport? Note: If circling minima exists for multiple Conventional NAVAID procedures, preference would be to retain ILS circling minima.

—Would cancellation result in all circling minima being removed from all airports within 20 NMs?

—Will removal eliminate lowest landing minima to an individual runway?

The following questions are applicable only to circling-only procedures:

—Does this circling-only procedure exist because of high terrain or an obstacle that makes a straight-in procedure unfeasible or which would result in the straight-in minimums being higher than the circling minima?

—Is this circling-only procedure (1) at an airport where not all runway ends have a straight-in IAP, and (2) does it have a Final Approach Course not aligned within 45 degrees of a runway which has a straight-in IAP?

Further consideration for cancellation under this policy would be terminated if any of the aforementioned questions are answered in the affirmative. If all questions are answered in the negative, the procedure would be processed as described in the following paragraph.

FAA Changing Notes on Instrument Charts

The FAA is gradually changing notes on instrument procedure charts (SIDs, STARs, and approaches) to consolidate and clarify equipment required and PBN-related information.

AOPA has published a detailed summary with background on the changes here.

The AOPA summary also includes tables that can help pilots who use Garmin equipment understand the capabilities of the avionics installed in their aircraft.

 

Flying without Paper Charts

I recently gave a presentation about flying RNAV procedures at the Northwest Aviation Conference. As usual, I asked how many pilots in the audience were using tablets like iPads in the cockpit. Most of the folks raised their hands. It’s astonishing how quickly the aviation community has adopted this technology.

Nevertheless, questions persist about the legality of “going paperless” in the cockpit, at least for typical GA pilots operating light aircraft under 14 CFR Part 91. Here are some key references to help you understand the rules and good operating practices.

The best background is in AC 91-78-Use of Class 1 or Class 2 Electronic Flight Bag (EFB), which explains:

This advisory circular (AC) provides aircraft owners, operators, and pilots operating aircraft under Title 14 of the Code of Federal Regulations (14 CFR) part 91, with information for removal of paper aeronautical charts and other documentation from the cockpit through the use of either portable or installed cockpit displays (electronic flight bags (EFB).

The AC also notes:

This AC is applicable to instrument flight rules (IFR) or visual flight rules (VFR), preflight, flight, and post flight operations conducted under part 91, unless prohibited by a specific section of 14 CFR chapter I.

And it explains:

EFB systems may be used in conjunction with, or to replace, some of the paper reference material that pilots typically carry in the cockpit. EFBs can electronically store and retrieve information required for flight operations, such as the POH and supplements, minimum equipment lists, weight and balance calculations, aeronautical charts and terminal procedures…The in-flight use of an EFB/ECD in lieu of paper reference material is the decision of the aircraft operator and the pilot in command. Any Type A or Type B EFB application, as defined in [AC 120-76] may be substituted for the paper equivalent. It requires no formal operational approval as long as the guidelines of this AC are followed.

You can find further guidance on the FAA website here. And Sporty’s has a good overview of the topic here. For information about using iPads and the like on practical tests, see this item at AOPA.

If you fly IFR using an approved GPS navigation system, you can find additional guidance (and common sense advice) in documents such as the Operational Suitability Report for the Garmin GTN series navigators, published by the FAA in 2011, and available in the FSIMS system, here.

The following Type B applications were evaluated under this report:

(1) Chart capability is limited to Approach Charts, Standard Terminal Arrival Routes, Departure Procedures and Airport Diagrams. Access to the chart information is accomplished by touching the chart symbol on the screen home page. Scaling is accomplished by touching the plus or minus signs on the screen. Chart information is in standard chart layout, oriented in portrait view. It is possible to overlay an approach chart on the navigation display. Navigation Display Approach Chart overlays however, are always oriented so that North on the chart is at the top of the display. Caution should be taken when using this feature, as it can be confusing in some circumstances.

(2) En route charts are not available to view in the GTN 7XX series of units. Airways and associated navigation aids and intersection names are displayed on the navigation display but not in chart format. Because en route chart view is not available, operators will be required to have immediately accessible a suitable approved aeronautical information source of en route charts.

A typical installation includes a GTN 7XX paired with a GTN6XX. Since the GTN6XX series of navigator does not have chart capability a second GTN7XX with charts and an independent power source may be installed to provide the necessary backup. Another method of redundancy could be for the operator to carry an approved stand alone Class I, or Class II EFB device onboard the aircraft. Otherwise, a set of paper charts is required to provide chart redundancy.

In the case of a single unit installation, paper charts (including approach, departure and arrival procedure, airport diagram and en route charts) must be onboard the aircraft or an approved stand alone Class I, or Class II (with a suitable approved source of aeronautical data) device may be substituted for paper charts.

Stand-Alone DMEs on Charts

As the FAA moves ahead it with its plans to decommission about one-third of the existing network of VORs in the continental U.S. (for more information, see Another Update on VOR Decommissioning and its related posts), a new type of navaid–a stand-alone DME facility–is appearing on aeronautical charts.

Here’s an example southwest of Las Vegas, NV. Note the identification and frequency box for the GOODSPRINGS DME (GOG). The site of the transmitter is shown by the small blue box indicated by the red arrow.

GoodspringsDME.jpg

Here’s the same facility on a low-altitude IFR chart:

GoodspringsDME-IFR.jpg

You can read more about these stand-alone DME facilities in DME Facilities – Charting and MAGVAR Issues (PDF), which describes the discussions of the Aeronautical Charting Forum, an FAA-industry group.

These stand-alone DMEs are primarily for use by aircraft with DME-DME area navigation equipment, and in many cases, they are left over when the VORs they were associated with are shut down. Where necessary, new DMEs will be added to support RNAV procedures based on DME-DME as an alternative to GPS. As you can see from the chart, these DMEs do not provide azimuth (course) information like a VOR-DME or VORTAC. They are simply DMEs.

If, like most IFR pilots flying typical GA aircraft, you use GPS as your primary navigation source, these charted stand-alone DMEs are of most interest as fixes that you can include in a route or flight plan. If you still have a DME receiver in your airplane, you can tune, identify, and reference these DMEs as you fly.

ATC Telephone Numbers for IFR Clearances

The FAA has announced that it will publish telephone numbers for some ATC facilities that provide IFR clearances and cancellations of IFR flight plans via the phone in the Chart Supplement (formerly known as the A/FD). FAA planned to begin implementation of the change on October 1, 2016 and complete the process by June 30, 2017.

The basic information was provided in a recommendation document (ACF-CG RD 16-020309) at the Aeronautical Charting Forum, which reads in part:

Subject: Publication of approach control phone numbers for purposes of Clearance
Delivery and/or IFR flight plan cancellation.

Background/Discussion: In accordance with the Administrator’s NAS Efficient Streamlined Services Initiative Air Traffic, Flight Service, and NATCA have agreed that air traffic facilities currently providing clearances to pilots via telephone (informally) will have their numbers published in the appropriate Chart Supplement, US. These same facilities will have the option to have a separate phone line installed for IFR flight plan cancellations, which will also be published. The attached Policy Decision Memorandum identifies the affected 32 Air Traffic facilities and reflects approval by VP System Operations, VP Air Traffic Services, and VP Technical Operations. Also attached are the Scoping Document Workgroup Agreement, Safety Risk Management Document, and Implementation Plan.

Recommendations: Publish the approach control phone numbers for Clearance Delivery and/or IFR flight plan cancellation in the Chart Supplement US, for example:

For CLNC DEL CTC BOSTON APCH (603) 594-5551

And, when available, for those facilities with the IFR cancellation line

To CANCEL IFR CTC BOSTON APCH (603) 594-5552

The official FAA memoranda that describe the details are attached to the recommendation documented linked above.

The list of TRACONs and towers (subject to revision) that will issue clearances directly to pilots via telephone includes:

  1. A90 -Boston
  2. C90 – Chicago
  3. Dl O -Dallas-Fort Worth
  4. D21 – Detroit
  5. F 11 – Central Florida
  6. 190 – Houston
  7. L30 – Las Vegas
  8. M03 – Memphis
  9. N90 -New York
  10. NCT -Northem California
  11. P80 – Portland
  12. R90 – Omaha
  13. S46 – Seattle
  14. S56 – Salt Lake
  15. T75 – Louis
  16. U90 -Tucson
  17. Y90 – Yankee
  18. ABE – Allentown, PA
  19. AUS -Austin, TX
  20. AVP – Scranton, PA
  21. ENA -Nashville, TN
  22. CLT – Charlotte,NC
  23. CRP – Corpus Christie, TX
  24. DAB -Daytona, FL
  25. IND – Indianapolis, IN
  26. MCI -Kansas City, MO
  27. MDT -Harrisburg, PA
  28. MSY -New Orleans, LA
  29. ORF -Norfolk, VA
  30. PHL – Philadelphia, PA
  31. SAT – San Antonia, TX
  32. PCT – Potomac, VA