An IFR Flight: KBFI-KUAO

Here’s video from a recent IFR flight in the Bonanza from Boeing Field (KBFI) in Seattle, WA to Aurora, OR (KUAO) just south of Portland, OR.

I was in visual meterological conditions (VMC) for almost all of the trip, but the destination was shrouded in low fog when I departed Seattle. I arrived just as the mist was clearing.

I flew the NRVNA ONE departure procedure from KBFI and flew via the preferred low-altitude IFR route to the Portland area (OLM V165 UBG). At KUAO, I flew the RNAV RWY 35 approach, which provides LPV minimums for WAAS-capable aircraft like my A36, which is equipped with a Garmin GTN 750 navigator and G500 PFD/MFD. (To experiment with these avionics, you can download the free Garmin simulators for Windows.)

I also use the free Beechcraft Performance app for iOS to confirm takeoff and landing data and other important details.

Throughout this 20-minute video, I tried to verbalize my intentions, procedures, checklists to help you understand how I try to conduct a flight.

Advertisements

Aerobatics with Data

Here’s a look at an aerobatic ride with data from a Garmin VIRB Ultra 30 camera’s sensors overlaid. The GPS-based position, speed, and altitude don’t match the information from cockpit instruments precisely, and the sensors sometimes can’t keep up with the dynamics of aerobatics, but the data do give you an idea of how quickly things change during aerobatics. We also had a tailwind of about 6 knots during the landing, so the GPS-derived groundspeed is higher than the indicated airspeed during the approach and landing.

It’s also worth noting that during aerobatic rides I try to fly smoothly and keep the Gs under control. Rides aren’t aerobatic contests or airshows.

To display the data in a video, I first import the video and corresponding data into the free Garmin VIRB Edit program. After choosing the gauges to display, I export the video and do the final editing in Adobe Premiere Elements.

Aerobatic Ride on a Summer Morning

New Private Pilot, IFR, and Commercial ACS effective June 11, 2018

FAA has published new editions of the Airmen Certification Standards for the:

  • Private Pilot-Airplane
  • Commercial Pilot-Airplane
  • Instrument Rating-Airplane

The new ACS are effective June 11, 2018. The introductory material for each ACS document includes a summary of major changes. You can download free PDF editions of the new ACS from the FAA website.

A couple of items on the commercial pilot ACS are worth pointing out here:

  • Revised Area of Operation IV to require touch down at a proper pitch attitude.
  • Added the evaluator’s discretion to ask for a full stall in Area of Operation VII, Tasks B and C.

The descriptions for the approach stall now state:

  • Acknowledge the cues at the first indication of a stall (e.g., airplane buffet, stall horn, etc.).
  • Recover at the first indication of a stall or after a full stall has occurred, as specified by the evaluator.

The discussion of the landing task notes:

Touch down at a proper pitch attitude, within 200 feet beyond or on the specified point, with no side drift, and with the airplane’s longitudinal axis aligned with and over the runway center/landing path.

Video: Early Evening Return to Boeing Field

Cloud Surfing

A few minutes of flying among the clouds during a couple of IFR flights in the Pacific Northwest.

More videos at my YouTube channel, BruceAirFlying.

Transiting Airspace with Flight Following

Pilots who are receiving radar advisories, better known as VFR Flight Following, often wonder if they will be cleared to enter airspace along their route.

For example, assume you’re flying VFR between Albany, OR (S12) and Scappoose, OR (KSCP).

(To see the route below on charts at SkyVector.com, click here.)

As you can see on the chart below, the direct route takes you over Salem (KSLE), a Class D airport; just west of the Class D airspace at Aurora, OR (KUAO); and later through the Class D airspace at Hillsboro (KHIO). The course also tracks just west of the busy Class C airspace that surrounds Portland International Airport (KPDX).

Albany-Scappoose.jpg

After takeoff, you contact Cascade Approach for flight following, get a squawk code, and, without restrictions from ATC, proceed on the direct route to KSCP. An overcast layer at 3000 ft. MSL restricts your cruise to at or below 2500 ft.

Do you have to contact the towers at KSLE and KHIO for permission to transit their airspace? Although you’ll remain legally clear of the Class D airspace at KUAO if you can remain on the direct course, what if you need to zig and zag to avoid clouds? Should you contact Aurora Tower? What about the Class C airspace at KPDX?

The September 2017 issue of Air Traffic Procedures Bulletin (PDF), a newsletter for air traffic controllers published by the FAA, clarifies the roles of pilots and air traffic controllers when pilots are receiving flight following. The bulletin notes that pilots and controllers have shared responsibility.

VFR Aircraft Receiving Radar Advisories (VFR Flight Following) Approaching Class D

What are ATCs responsibilities? Who is responsible for the pilot’s communication responsibility within the Class D surface area?

Many times, pilots receiving VFR Radar Advisories believe that as long as they are talking to one ATC facility, they have fulfilled their responsibility for entering a Class D airspace. Pilots may believe that controllers will tell them when/if they are approaching a Class D surface area. As controllers, we have a responsibility to coordinate with the appropriate ATC facility having jurisdiction over the airspace.

First, controllers must follow the guidance in Air Traffic Control (JO 7110.65, PDF available here):

As controllers, we have a responsibility to coordinate with the appropriate ATC facility having jurisdiction over the airspace, FAA Order JO 7110.65W states:

2-1-16. SURFACE AREAS

b. Coordinate with the appropriate control tower for transit authorization when you are providing radar traffic advisory service to an aircraft that will enter another facility’s airspace.

NOTE− The pilot is not expected to obtain his/her own authorization through each area when in contact with a radar facility.

But the bulletin notes that pilots also have a regulatory requirement to establish two-way communications before entering Class D or Class C airspace, as noted in the AIM and other sources.

The pilot’s responsibility to meet their radio communication requirement to enter Class D airspace is NOT eliminated when receiving VFR Radar Advisories. The Aeronautical Information Manual, 3-2-1, states:

d. VFR Requirements. It is the responsibility of the pilot to ensure that ATC clearance or radio communication requirements are met prior to entry into Class B, Class C, or Class D airspace. The pilot retains this responsibility when receiving ATC radar advisories. (See 14 CFR Part 91.)

To resolve this conflict, the bulletin goes on to explain:

Since both the controller providing VFR Radar Advisories and the pilot who is receiving the advisories have a clear responsibility, there can be some confusion about which party is communicating with the ATC facility having jurisdiction over the Class D surface area. 14 CFR 91.129 includes language that specifies that it is the pilot’s overall responsibility for complying with the Class D communications requirement.

There are a few ways controllers can assist pilots when providing VFR Radar Advisories that will ultimately help with controller workload. Since the pilot is responsible for their Class D communication requirement, if the controller coordinates with the ATC facility having jurisdiction over the surface area, let the pilot know, so they do not query you. If you are too busy to coordinate, you are required to terminate VFR Radar Advisories in a timely manner so the pilot is able to contact the Class D ATC facility prior to entry.

It’s also important to note that air traffic control facilities have letters of agreement (LOA) to establish local procedures, such as entry and exit routes at busy airports, handoffs between facilities, and similar matters. These LOA are not typically published for pilots. An LOA may allow an approach facility to send aircraft under its control through a Class D surface area at specific altitudes and along certain routes. Or the LOA may streamline the coordination required before one controller allows an aircraft to enter another controller’s airspace.

For more information about your obligation to follow ATC instructions, see Compliance with ATC Clearances and Instructions—Even When VFR.

For more information on this topic, see BruceAir’s Guide to ATC Services for VFR Pilots.