AOPA Focused Flight Review

The AOPA Air Safety Institute has a new free guide and resources for pilots who need a flight review.

AOPA-FocusedFlightReview

The Focused Flight Review includes several profiles that emphasize such areas as:

  • Positive Aircraft Control
  • Weather & CFIT
  • Fuel, Engine, & Other Systems
  • Instrument Proficiency
  • Takeoffs, Landings, & Go-Arounds
  • Mountain & Backcountry Flying

The AOPA information complements AC 61-98 Currency Requirements and Guidance for the Flight Review and Instrument Proficiency Check and Conducting an Effective Flight Review, both FAA publications.

Advertisements

Declining Demand for FSS Services

The July/August 2018 issue of FAA Safety Briefing includes a note about the end of TIBS, the Telephone Information Briefing Service (TIBS) in the contiguous United States, effective Sept. 13, 2018.

(TIBS is recorded information, including weather reports and forecasts. Flight Service created TIBS when there was a large demand for briefings, with the potential for extremely long wait times. You can read about TIBS in AIM 7-1-8.)

The interesting news the in article, however, isn’t about TIBS, which most pilots don’t know about and therefore don’t use and won’t miss. Instead, there’s the following detail about how pilots are actually using FSS:

With the advent of the internet and other enabling technology, the demand for information from Flight Service specialists has declined. From more than 3,000 specialists in more than 300 facilities during the early 1980s, staffing has decreased to fewer than 400 specialists in three facilities. Radio contacts have dropped to less than 900 per day, from an average of 10,000 per day.

A chart from another FAA document shows the trend graphically:

FSS-RadioContacts

This trend led to the end of Flight Watch in 2015 and a program to reduce the number of remote communications outlets (RCO) for FSS.

As the article notes, complying with 14 CFR 91.103 Preflight Action doesn’t require calling FSS (for more background, see What Qualifies as an Official Preflight Briefing? at BruceAir):

There are multiple sources available to pilots to access weather and aeronautical information, which are often presented in an easier to understand graphical format. Pilots no longer need to call a Flight Service specialist to adhere to Title 14 Code of Federal Regulations (14 CFR) section 91.103 to maintain awareness of weather and aeronautical information.

FAA Publishes Final Policy on Cancelation of Certain Circling Approach Minimums

FAA has established its final policy for a program to reduce the number of circle-to-land approaches. The notice was published in the Federal Register on July 28, 2018. FAA had previously advised its intent to reduce the number of such approaches in 2016.

According to the new notice:

The FAA’s policy is not intended to ensure straight-in IAPs for every runway end, but rather minimizing IFP redundancy in the NAS. The FAA acknowledges that with the cancellation of some circling procedures, there may be reduced airport accessibility, but no reduction in runway availability.

FAA’s reasons for the new policy are spelled out in the notice:

As new technology has facilitated the introduction of area navigation (RNAV) instrument approach procedures over the past decade, the number of procedures available in the NAS has nearly doubled. The complexity and cost to the FAA of maintaining the instrument flight procedures inventory while expanding the new RNAV capability is not sustainable. Managing two versions of the NAS requires excess manpower, infrastructure, and information management which is costly and unsupportable in the long-term. To mitigate these costs, the FAA has a number of efforts underway to effectively transition from the legacy to the NextGen NAS. One area of focus for this transition is instrument flight procedures (IFPs). The FAA seeks to ensure an effective transition from ground-based IFPs to greater availability and use of satellite-based IFPs while maintaining NAS safety…

As of March 29, 2018, there are 12,068 IAPs in publication, consisting of 33,825 lines of minima, 11,701 of which are circling lines of minima. This represents a nearly 9 percent increase in IAP lines of minima from September 18, 2014. Circling procedures account for approximately one-third of all lines of minima for IAPs in the NAS.

Here are the key points in the new policy:

All circling procedures will continue to be reviewed through the established IAP periodic review process. As part of that review process, each circling procedure will be evaluated against the following questions:

  • Is this the only IAP at the airport?
  • Is this procedure a designated MON airport procedure?
  • If multiple IAPs serve a single runway end, does this procedure provide the lowest circling minima for that runway?
  • If the RNAV circling minima is not the lowest, but is within 50′ of the lowest, the FAA would give the RNAV preference.
  • Would cancellation result in removal of circling minima from all conventional NAVAID procedures at an airport? If circling minima exists for multiple Conventional NAVAID procedures, preference would be to retain ILS circling minima.
  • Would cancellation result in all circling minima being removed from all airports within 20 NMs? This particular criterion recognizes the circling content of the Instrument Rating—Airplane Airman Certification Standards (ACS).
  • Will removal eliminate lowest landing minima to an individual runway?

The following questions are applicable only to circling-only procedures:

  • Does this circling-only procedure exist because of high terrain or an obstacle which makes a straight-in procedure infeasible or which would result in the straight-in minimums being higher than the circling minima?
  • Is this circling-only procedure (1) at an airport where not all runway ends have a straight-in IAP, and (2) does it have a Final Approach Course not aligned within 45 degrees of a runway which has a straight-in IAP?
  • Further consideration for cancellation under this policy will be terminated if any of the aforementioned questions are answered in the affirmative. If all questions are answered in the negative, the procedure will be processed as described in the following paragraph.

When a candidate has been identified for cancellation, Aeronautical Information Services will post the proposed cancellation on the Instrument Flight Procedures Information Gateway (IFP Gateway). Comments regarding the aforementioned circling procedure should be submitted via email to: AMC-ATO-IFP-Cancellations@faa.gov. Comments will only be considered and adjudicated when submitted prior to the comment deadline associated with the flight procedure as listed on the IFP Coordination tab of the Instrument Flight Procedures Information Gateway site. Aeronautical Information Services will adjudicate and respond to each comment within 30 days of being received. When a determination is made to cancel a part 97 instrument flight procedure or circling line of minima, the cancellation will be published in the Federal Register.

New IFR Currency Rules and Other Changes to 14 CFR Part 61

On June 27, 2018, FAA published an extensive revision to sections of 14 CFR Part 61 governing IFR currency with the use of aviation training devices, the role of technically advanced aircraft (TAA) in training for certain certificates and ratings, and many other important changes. You can download the PDF of the final rule here.

This rule is result of an NPRM published in May 2016, which you read about at BruceAir here.

Some of the new regulations should become effective July 28, 2018. Others will be effective later; the details of the effective dates are in the final rule and provided later this article.

The new regulations of primary interest to general aviation pilots:

  • Allow instrument-rated pilots to maintain IFR currency using an ATD, FTD, or FSS without having an instructor present. The IFR currency rules also now make no distinction between tasks performed in an ATD, FTD, or FSS and an aircraft.
  • Change some provisions related to the completion of an instrument proficiency check (IPC).
  • Allow the use of technically advanced aircraft in lieu of or in combination with complex aircraft to acquire 10 hours of flight time formerly required in a complex aircraft for commercial pilot applicants.

SUMMARY: This rulemaking relieves burdens on pilots seeking to obtain aeronautical experience, training, and certification by increasing the allowed use of aviation training devices. Use of these training devices has proven to be an effective, safe, and affordable means of obtaining pilot experience. This rulemaking also addresses changing technologies by accommodating the use of technically advanced airplanes as an alternative to the use of older complex single engine airplanes for the commercial pilot training and testing requirements. Additionally, this rulemaking broadens the opportunities for military instructor pilots or pilot examiners to obtain civilian ratings based on military experience, expands opportunities for logging pilot time, and removes a burden from sport pilot instructors by permitting them to serve as safety pilots. Finally, this rulemaking includes changes to some of the provisions established in an August 2009 final rule. These actions are necessary to bring the regulations in line with current needs and activities of the general aviation training community and pilots.

The following is an analysis of the new rules that are of interest primiarly to pilots operating under 14 CFR Parts 61 and 91. To understand all of the new regulations and how they affect certain commercial operators and flight training programs, you should review the entire text of the final rule.

CFI No Longer Required when using FFS, FTD, or ATD to Maintain IFR Currency

The FAA is amending § 61.51(g) by revising paragraph (g)(4) and adding a new paragraph (g)(5) to allow a pilot to accomplish instrument recency experience when using a FFS, FTD, or ATD without an instructor present, provided a logbook or training record is maintained to specify the approved training device, time, and the content as appropriate.

To learn more about the definitions of FSS, FTD, and ATD, see the final rule and AC 61-136.

A pilot will still be required to have an instructor present when using time in a FFS, FTD, or ATD to acquire instrument aeronautical experience for a pilot certificate or rating.

And the new rule does not changes the provisions of § 61.51 that require an instrument proficiency check if a pilot does not maintain IFR currency.

Here’s the revised language:

§ 61.51 (g) (5) A person may use time in a full flight simulator, flight training device, or aviation training device for satisfying instrument recency experience requirements provided a logbook or training record is maintained to specify the training device, time, and the content.

(h) Logging training time. (1) A person may log training time when that person receives training from an authorized instructor in an aircraft, full flight simulator, flight training device, or aviation training device.

The new language for § 61.57 Recent flight experience: Pilot in command is:

(c) (2) Use of a full flight simulator, flight training device, or aviation training device for maintaining instrument experience. A pilot may accomplish the requirements in paragraph (c)(1) of this section in a full flight simulator, flight training device, or aviation training device provided the device represents the category of aircraft for the instrument rating privileges to be maintained and the pilot performs the tasks and iterations in simulated instrument conditions. A person may complete the instrument experience in any combination of an aircraft, full flight simulator, flight training device, or aviation training device.

The FAA’s analysis of the comments on the proposal notes that:

…[B]ecause instrument recency experience is not training, the FAA no longer believes it is necessary to have an instructor present when instrument recency experience is accomplished in an FSTD or ATD. The FAA is therefore removing the requirement for an authorized instructor to be present when a pilot accomplishes his or her instrument recency experience in an FFS, FTD, or ATD…

As with instrument recency experience accomplished in an aircraft, § 61.57(c) requires the pilot to log the required tasks in his or her logbook and § 61.51(b) requires certain information to be logged, including the type and identification of the FSTD or ATD. Additionally, § 61.51(g)(5) requires the pilot to maintain a logbook or training record that specifies the training device, time, and content. The FAA therefore emphasizes the importance of clearly documenting in one’s logbook the type and identification of the FFS, FTD, or ATD used to maintain recency and a detailed record of the specific tasks completed.

The FAA discussion points out that pilots have long been able to maintain IFR currency in aircraft by flying with a safety pilot, and the FAA addressed several comments about the efficacy of using ATDs and FTDs to maintain instrument currency.

Because instructor supervision is not required when a pilot satisfies the instrument
recency experience in an aircraft, similarly, it should not be required when a pilot satisfies the same instrument recency experience in a FFS, FTD, or ATD. A pilot must perform and log the required tasks regardless of whether the tasks are accomplished in an aircraft, FFS, FTD, or ATD. As several commenters noted, pilots who satisfy the instrument recency experience in an FFS, FTD, or ATD should be trusted in the same fashion as those pilots who satisfy the requirements in an aircraft. While there is a potential for falsification in both scenarios, the FAA finds that the current penalties for falsifying pilot logbooks and records, which include suspension or revocation of one’s airman certificate, are a sufficient deterrent to falsifying the logging requirements…

Furthermore, the FAA is not requiring the FFS, FTD, or ATD to produce a flight track and log pilot activities as proof of performing the required tasks for maintaining instrument recency; nor is the FAA imposing more stringent recordkeeping requirements on the flight schools who own such FFS, FTD, or ATDs or on the pilots who use the FFS, FTD, or ATD to maintain instrument recency…

The FAA finds that satisfying instrument recency experience requirements in an FFS, FTD or ATD is as beneficial as satisfying the requirements in an aircraft regardless of whether an instructor is present. FFSs, FTDs, and ATDs are specifically designed to allow a person to replicate and execute instrument tasks just as they would in an aircraft…

Section 61.57(c) requires a pilot to perform and log minimum tasks to maintain instrument recency; § 61.57(c) does not impose training or proficiency requirements. An instrument-rated pilot has already demonstrated his or her proficiency during a practical test with an examiner. The purpose of the instrument recency experience requirement is to ensure the pilot maintains his or her instrument proficiency by performing and logging the required instrument experience. Therefore, the FAA expects pilots accomplishing the instrument recency experience to already be at an acceptable level of proficiency. The FAA recommends, however, that a pilot seek additional training if he or she is uncomfortable with his or her performance of the required tasks under § 61.57(c)…

FAA believes that new § 61.51(g)(5) will likely increase the public’s use of FFSs, FTDs or ATDs and notes that the majority of comments supported this conclusion…

As a general matter, the FAA notes that ATDs allow programming and practice of many instrument situations, scenarios, and procedures. The current capabilities of ATDs, FTDs, and FFSs allow an instrument rated pilot to program and successfully practice simulated low visibility weather conditions, multiple approaches in a shorter period of time, emergency procedures, equipment failures, and other various flight scenarios that cannot necessarily be accomplished in an aircraft safely. Allowing the use of ATDs, FTDs and FFSs without the requirement (and therefore the cost) of having an instructor present can result in more pilots being better prepared. This benefit could include executing flight scenarios they may not normally experience when accomplishing instrument recency in an aircraft, or in locations where they do not normally fly, or when practicing emergency procedures that are likely too dangerous to accomplish in an aircraft. This includes the unique capability of practicing identical instrument approach procedures to an airport the pilot may not have otherwise flown to before.

Instrument Recency Experience Requirements

The new rules will simplify § 61.57(c) which describes how pilots can use ATDs, FTDs, and FSS alone or in combination with flight time in an aircraft to maintain IFR currency.

The FAA is aligning the requirements for accomplishing instrument experience in an ATD with the requirements for accomplishing instrument experience in an FSTD or aircraft. Prior to this final rule, a person accomplishing instrument recency experience in an aircraft, FFS, FTD, or a combination, was required to, within the preceding 6 months, have performed: (1) Six instrument approaches; (2) holding procedures and tasks; and (3) intercepting and tracking courses through the use of navigational electronic systems. Persons accomplishing instrument recency experience exclusively in an ATD, however, were required to have performed, within the preceding 2 months, the same tasks and maneuvers listed above plus “two unusual attitude recoveries while in a descending Vne airspeed condition and two unusual attitude recoveries while in an ascending, stall speed condition” and a minimum of three hours of instrument recency experience. This final rule amends § 61.57(c) to allow pilots to accomplish instrument experience in ATDs by performing the same tasks required for FSTDs and aircraft, and at the same 6-month interval allowed for FSTDs and aircraft.

In support of the change, the FAA notes that:

FAA believes that the current design and technology of ATDs has advanced and provides a greater opportunity for the advancement of instrument skills and improved proficiency, as well as a wider range of experiences and scenarios, which justifies their increased use in § 61.57(c)(2)…

While the FAA stated in the NPRM that a pilot would be permitted to complete instrument recency experience in any combination of aircraft, FFS, FTD, or ATD, the proposed rule would not have expressly allowed this. The FAA is therefore adding language to proposed § 61.57(c)(2) to expressly state that a person may complete the instrument recency experience in any combination of aircraft, FFS, FTD, or ATD…

FAA disagrees with [comments] requiring a pilot to accomplish the instrument recency experience in an aircraft. The FAA has allowed the instrument recency tasks to be accomplished in an FFS, FTD, or ATD since 2009. The FAA did not propose to change the allowance of an ATD to satisfy instrument recency experience. Rather, given the technological advancements that have occurred in ATDs since 2009, the FAA proposed to align ATD use to the 6-month task completion interval and the required tasks consistent with FSTDs and aircraft…

FAA finds that an ATD adequately replicates an aircraft for purposes of maintaining instrument recency. Section 61.57(c) does not require a pilot to experience variables and additional stressors that one may experience in an aircraft to maintain instrument recency. The FAA recognizes the importance of familiarity with these conditions and events; however, they are more attributable to training. An instrument-rated pilot maintaining instrument recency under § 61.57(c) has already accomplished the required instrument training and has already demonstrated his or her proficiency during a practical test with an examiner.

Furthermore, the FAA disagrees with the comment that requiring more flight time in an aircraft will result in fewer accidents. The FAA finds that allowing a pilot to accomplish instrument recency requirements in an ATD or FSTD encourages more pilots to remain instrument current and provides the necessary experience to enable safe operation of an aircraft in instrument meteorological conditions (IMC)…

FAA believes that training in FSTDs and ATDs in combination with training in an aircraft reinforces the necessary pilot skill to rely solely on the flight instruments to successfully operate an aircraft in IMC. This mitigates any reliance on postural senses, sounds, or feelings that can otherwise lead to loss of control. The FAA further described that training devices do not require motion to be approved and that training devices cannot completely train the pilot to ignore certain erroneous sensory perceptions, but pilots develop this skill during the flight portion of their instrument training. Consistent with the final rule, “Aviation Training Device Credit for Pilot Certification,” the FAA believes that instrument experience accomplished in ATDs is an effective procedural review and reinforces the necessary skills to properly interpret the aircraft’s flight instruments, allowing successful operation of an aircraft in IMC.

Change to IPC Requirements

The final rule also revises § 61.57(d) to remove the reference to the practical test standards (or ACS) for the tasks required to complete an IPC.

In § 61.57(d), the FAA is removing the reference to the PTS. The FAA recognizes that it was inappropriate for § 61.57(d) to state that the areas of operation and instrument tasks were required in the instrument rating PTS. The PTS and ACS do not contain regulatory requirements. Therefore, rather than referencing the instrument rating ACS in § 61.57(d), the FAA is codifying in § 61.57(d) the areas of operation for an IPC.

The new § 61.57(d) reads:

Instrument proficiency check. (1) Except as provided in paragraph (e) of this section, a person who has failed to meet the instrument experience requirements of paragraph (c) of this section for more than six calendar months may reestablish instrument currency only by completing an instrument proficiency check. The instrument proficiency check must consist of at least the following areas of operation:

(i) Air traffic control clearances and procedures;

(ii) Flight by reference to instruments;

(iii) Navigation systems;

(iv) Instrument approach procedures;

(v) Emergency operations; and

(vi) Postflight procedures.

Note that the new rule doesn’t specifically mention circle-to-land approaches, approaches to a landing, etc. According to the IFR ACS, these tasks must be accomplished in an airplane if you use an ATD or FTD for other parts of an IPC.

But the new list is more general. The new language in § 61.57(d) implies you could use an ATD or FTD to complete all of an IPC since you wouldn’t specifically be required to complete tasks that typically are not approved in those devices.

The change to § 61.57(d) seems to require updating at least the LOAs for ATDs and FTDs, AC 61-98D, and Instrument Proficiency Check (IPC) Guidance.

Completion of Commercial Pilot Training and Testing in Technically Advanced Airplanes

The new rules, effective August 28, 2018, will complement the recent changes in FAA policy that no longer require the use of complex aircraft for certain practical tests (more on this topic at BruceAir here).

The final rule substantially changes the definition of TAA in the NPRM.

§ 61.129 Aeronautical experience.

(ii) 10 hours of training in a complex airplane, a turbine-powered airplane, or a
technically advanced airplane (TAA) that meets the requirements of paragraph (j) of this section, or any combination thereof. The airplane must be appropriate to land or sea for the rating sought;…

(j) Technically advanced airplane. Unless otherwise authorized by the Administrator, a technically advanced airplane must be equipped with an electronically advanced avionics system that includes the following installed components:
(1) An electronic Primary Flight Display (PFD) that includes, at a minimum, an airspeed indicator, turn coordinator, attitude indicator, heading indicator, altimeter, and vertical speed indicator;
(2) An electronic Multifunction Display (MFD) that includes, at a minimum, a moving
map using Global Positioning System (GPS) navigation with the aircraft position displayed;
(3) A two axis autopilot integrated with the navigation and heading guidance system; and
(4) The display elements described in paragraphs (j)(1) and (2) of this section must be
continuously visible.

The discussion of the new rule expands on the reasoning behind and comments on the NPRM.

Prior to this final rule, a pilot seeking a commercial pilot certificate with an airplane single-engine class rating was required to complete 10 hours of training in either a complex or turbine-powered airplane. In the NPRM, the FAA proposed to add a definition of technically advanced airplane (TAA) to § 61.1 and amend the training requirements to allow a pilot seeking a commercial pilot certificate with an airplane single-engine class rating to complete the 10 hours of training in a TAA instead of a complex or turbine-powered airplane. In addition to these regulatory changes, the FAA proposed to revise the practical test standards for commercial pilot applicants and flight instructor applicants seeking an airplane category single engine class rating to allow the use of a TAA on the practical tests.

Several comments on the NPRM highlighted problems with the FAA’s original defintion of TAA. In response, the FAA notes that:

The FAA recognizes that the proposed definition would have been too prescriptive. …FAA has revised the proposed language in response to industry’s concerns to make it more flexible and accommodating of new technologies. Furthermore, the FAA recognizes that the definition of TAA would have inappropriately embedded requirements, which may have inhibited future technologies from falling under the definition of a TAA. The FAA is therefore revising the definition of TAA in § 61.1 to contain a more general description of a TAA. TAA is now defined as an airplane equipped with an electronically advanced avionics system. The FAA is relocating the requirements regarding what a TAA must contain to § 61.129 by adding new paragraph (j). The FAA is also adding language to § 61.129(j) to allow the FAA to authorize the use of an airplane that may not otherwise meet the requirements of a TAA. This additional language is intended to provide flexibility by allowing the FAA to accommodate future technologies that do not necessarily meet the confines of the regulatory requirements for a TAA in § 61.129(j).

The discussion of the final rule includes a detailed response to comments about the use of such terms as PFD and MFD and the description of the autopilot required in a TAA. The basic requirements are described in the FAA discussion:

FAA is retaining the terms “Primary Flight Display,” “Multifunction Display,” and “advanced” in the TAA requirements. The FAA disagrees that the terms PFD and MFD will cause confusion. These terms are currently used and described in several FAA publications that are recognized by the aviation industry…

PFD is defined as “a display that provides increased situational awareness to the pilot by replacing the traditional six instruments used for instrument flight with an easy-to-scan display that provides the horizon, airspeed, altitude, vertical speed, trend, trim, and rate of turn among other key relevant indications.” MFD is defined as a “small screen (CRT or LCD) in an aircraft that can be used to display information to the pilot in numerous configurable ways. Often an MFD will be used in concert with a primary flight display.”

The FAA believes the terms PFD and MFD add clarity to the TAA requirements by
describing and prioritizing the display features and elements for TAA avionics and their respective functions. For example, the term PFD is specific to the use of the primary flight controls to maintain aircraft attitude and positive control. The PFD is used by the pilot to execute appropriate use of the control stick or yoke for pitch and bank, rudder pedals for yaw, and throttle for engine power. The PFD is designed specific to controlling the aircraft attitude and altitude relative to the horizon and the surface of the earth, especially when outside visibility is poor or unavailable. The MFD has a different priority; its function is secondary to the PFD. The MFD is designed for navigational use and position awareness information, even though it may include some PFD features for redundancy. Furthermore, the FAA is requiring certain minimum display elements for both a PFD and MFD, respectively, thereby clarifying what will be considered a PFD or MFD…

Section 61.129(j)(2) requires only the minimum elements of a MFD; it does not preclude the use of a split-screen display or two independent screens contained within a single physical unit. Therefore, a manufacturer may use a split-screen display or two independent screens for the PFD and MFD provided the displays contain the minimum elements required for each…

FAA is clarifying the MFD requirements by first describing what the display shows (i.e., a moving map) and then describing how the display is facilitated (i.e., using GPS navigation). Accordingly, § 61.129(j)(2) now requires the MFD to include, at a minimum, a moving map using GPS navigation. The FAA believes this
revision to the proposed language clarifies that a system with a moving map display common to GPS/WAAS navigators would satisfy the MFD requirement. Additionally, the FAA is requiring the aircraft position to be displayed on the moving map…

FAA removing the phrase “independent additional” from the proposed language to allow a single piece of equipment or single display to satisfy the requirement for both a PFD and MFD. However, to ensure that both displays are visible at the same time, the FAA is requiring the display elements for both the PFD and MFD (paragraphs (j)(1) and (2)) to be continuously visible…

FAA did not intend to exclude systems that provide autopilot functions separate from the MFD. The FAA is therefore separating the “two-axis autopilot” requirement from the MFD requirement. Accordingly, under new § 61.129(j)(3), the two axis autopilot is no longer required to be included as part of the MFD. This change from what was proposed allows the use of independent/aftermarket autopilot systems…

The TAA requirements in no way restrict the use of peripheral or supporting equipment that enables the display functionality described for the PFD and MFD in the TAA requirements…

While there may be different TSOs for the various functions of GPS, moving map, and navigation resulting in separate pieces of underlying equipment, this equipment can support the MFD requirements so long as the MFD includes a moving map that uses GPS navigation with the aircraft position displayed…

The TAA requirements of § 61.129(j) do not require the autopilot to have GPSS. However, § 61.129(j) specifies only the minimum requirements for a TAA. Therefore, an autopilot may have additional features, including GPSS. The “two axis” requirement refers to the lateral and longitudinal axes. The autopilot at a minimum must be able to track a predetermined GPS course or heading selection, and also be able to hold a selected altitude. The autopilot is not, however, required to control vertical navigation other than holding a selected altitude…

Revised Definition of Pilot Time

The new rule changes the definition of pilot time in § 61.1 to read:

Pilot time means that time in which a person—
(i) Serves as a required pilot flight crewmember;
(ii) Receives training from an authorized instructor in an aircraft, full flight simulator, flight training device, or aviation training device; or
(iii) Gives training as an authorized instructor in an aircraft, full flight simulator, flight training device, or aviation training device.

Effective Dates

The changes to the regulations become effective as follows:

This rule is effective July 27, 2018, except for the amendments to §§ 61.31(e)(2) and (f)(2), 61.129(a)(3)(ii), (b)(3)(ii) and (j), 61.197, 61.199, 61.412, 61.415, 91.109, and appendix D to part 141, which are effective August 27, 2018; the amendments to §§ 61.1 (amendatory instruction 10 revising the definition of ‘‘Pilot time’’), 61.39, 61.51(e) and (f), 61.57(c), 61.159(a), (c), (d), (e), and (f), 61.161(c), (d), and (e), 135.99, and 141.5(d) which are effective November 26, 2018; and the amendments to §§ 61.3, 63.3, 63.16, 91.313, 91.1015, 121.383, and 135.95, which are effective December 24, 2018.

 

Update on ATC Phone Numbers and IFR Clearances

FAA continues to publish ATC telephone numbers for pilots who need to get an IFR clearance or close an IFR flight plan at non-towered airports (background here at BruceAir).

Note that FAA is testing a system that would allow pilots to receive ATC clearances on mobile devices. For more information, see this article at AOPA.

An FAA representative briefed (full presentation here) the April 25-26, 2018 meeting of the Aeronautical Charting Forum (complete meeting minutes here).

Highlights:

  • Chart Supplement (A/FD) entries for 656 airports have been updated with clearance delivery phone numbers.
  • 25 additional approach control facilities will participate in the program; the Chart Supplement entries for over 200 additional airports will be updated to include a clearance delivery phone number.
  • For all other uncontrolled airports without a GCO or radio outlet linking them to ATC or Flight Service, pilots will be able to obtain a clearance by calling the overlying ARTCC.

The September 2018 update to the AIM will include the following paragraph:

5-2-3. TAXI CLEARANCE
a. Pilots departing on an IFR flight plan should consult the Chart Supplement US airport/facility directory to determine the frequency or telephone number to use to contact clearance delivery. On initial contact pilots should advise the flight is IFR and state the destination airport.

Proposed Changes to Airport Diagrams

FAA is proposing to remove the inset airport diagrams from instrument procedure charts and the Chart Supplement (A/FD) and instead publish complete airport diagrams for all airports with IFR procedures.

The proposal (detailed FAA briefing here) was discussed at the April 25-26, 2018 meeting of the Aeronautical Charting Forum (complete meeting minutes here).

FAA currently produces:

  • 700 airport diagrams
  • 3000 airport sketches in the Chart Supplement
  • 3000 inset diagrams on terminal procedure charts

AirportDiagrams-001

The detailed proposal includes the following key points:

  • Eliminate Terminal and Chart Supplement Sketches.
  • All hard-surfaced runway public use airports with IFR procedures will have a published airport diagram.
  • Eliminate cultural features such as trees, creeks, water and power lines etc.
  • Change diagram specifications to incorporate information from the chart supplement and terminal chart sketches.
  • Add geo-referenced information for real-world location and for future data driven product development.

FAA argued that the proposed charting change would:

  • Eliminate maintenance of three types of airport layouts.
  • Create a single standard Airport Diagram for all airports.
  • Print one diagram in one publication (currently printed 4 ways).
  • Free up space in the TPP plate for more relevant procedural information
  • Provide a more robust product.
  • Streamline internal production processes.
  • Deliver a more accurate and updated product.

An FAA representative noted that Jeppesen does not publish inset sketches on its terminal charts. Adopting this proposal would follow that practice.

The proposal generated detailed discussion, and FAA solicited comments from users and organizations such as AOPA.

Update on VOR Decommissioning

The FAA has updated its plans to shut down about 311 VORs (about 30% of the existing network of 873 navaids) by 2025. About 585 VORs will remain in the minimum operational network (MON).

I went through the list of VORs that have been shut down and those scheduled to be decommissioned through September 2018. This PDF includes links to each navaid at SkyVector so that you can see them on a chart.

Note that in all cases, several nearby VORs remain active. Some of the VORs retain the DME feature and remain named fixes that you can file and use (with GPS–or DME).

The primary impact of the shutdowns would seem to be VOR-based approaches and perhaps departure procedures. Low altitude Victor airways, where necessary, are being supplanted with T-routes.

As the slide below shows, most of the VORs set to be decommissioned are in the Eastern and Central regions; only 15 navaids in the Western region are on the list.

To see the full list of VORs on the shutdown list, visit this entry at BruceAir.

VOR-Mon-Chart-April 2018

At the April 25-26, 2018 meeting of the Aeronautical Charting Forum (complete meeting minutes as PDF here), a representative of the VOR MON Program Office described progress on the plan (full presentation as PDF here). Here are some highlights:

  • As of April 2018, 23 VORs have been decommissioned (see list below).
  • 15 more VORs will be shut down by the fall of 2018 (see list below).
  • FAA is upgrading the remaining VORs to support a standard service volume of 70 nm at 5000 AGL.

 

The FAA plans to increase the standard service volume (SSV) of the VORs that remain in the MON. Specifically, SSV at 5000 AGL will increase from the present 40 nm to 70 nm to support IFR navigation during a GPS outage. The following slides compare VOR coverage under the current standard with coverage using the new SSV.

VOR MON 40nm

VOR MON 70nm

Here’s the list of VORs that have been decommissioned so far:

Discontinued-VORs-April 2018

Here’s the list of the VORs scheduled for shutdown by the fall of 2018:

Discontinued-VORs-Fall 2018