Avionics Flow Check

Here’s my latest tip for Pilot Workshops: The Avionics Flow Check.

It’s a simple way to ensure that you’ve configured the avionics before each important phase of flight. The video below shows a before-takeoff avionics flow.

Chaotic Traffic Pattern: Sedona, AZ (KSEZ)

I recently flew friends to Sedona, AZ (KSEZ) for brunch on a beautiful Sunday morning. The flight from the Las Vegas area was uneventful, but the arrival at KSEZ (video below) illustrated the need for clear communications and standard traffic pattern procedures at busy non-towered airports.

Sedona, AZ (KSEZ) on a sectional chart

KSEZ is famous for its runway located on a mesa above the town, which is surrounded by spectacular red rock formations and supposedly is home to at least one spiritual energy vortex. Some wags call KSEZ the USS Sedona, because landing there is as close as most pilots will come to landing on an aircraft carrier (the other famous candidate for landlubbers is Catalina, CA; KAVX).

Closer view of the airport on a sectional chart

The airport is at 4830 MSL elevation; traffic pattern altitude is 6003 for piston aircraft, per the remarks in the Chart Supplement. It has one runway, 3-21. Runway 3 slopes up, and it is the preferred choice for landing when winds are light. Runway 21 is usually the best choice for takeoff. Left traffic is designated for both runway ends; downwind and base west of the airport when using runway 3; downwind and base east of the airport when using runway 21.

The recently updated AC 90-66B–Nontowered Airport Operations describes the recommend procedures for entering and flying the traffic pattern at a non-towered airport, and it provides examples of best practices for communicating on the Common Traffic Advisory Frequency (CTAF) assigned to each airport.

The airport was busy on that Sunday morning, mostly with arriving traffic as we approached at about 1100 MST.

Arriving at KSEZ

But the problem during this approach and landing wasn’t really the number of airplanes trying to use the airport. Instead, it was difficult to develop a good picture of the traffic around the airport and to anticipate the actions of other pilots because:

Some pilots overflew the airport to enter the downwind directly or entered downwind directly rather than flying a 45-degree entry. Now, the 45-degree entry isn’t required, and AC 90-66B discusses two options for joining the downwind if you overfly the airport.

Traffic pattern entry after crossing overhead at midfield.

But the advisory circular also notes that:

11.3 Traffic Pattern Entry. Arriving aircraft should be at traffic pattern altitude and allow for sufficient time to view the entire traffic pattern before entering. Entries into traffic patterns while descending may create collision hazards and should be avoided. Entry to the downwind leg should be at a 45 degree angle abeam the midpoint of the runway to be used for landing. The pilot may use discretion to choose an alternate type of entry, especially when intending to cross over midfield, based upon the traffic and communication at the time of arrival. [Emphasis added.]

Note: Aircraft should always enter the pattern at pattern altitude, especially when flying over midfield and entering the downwind directly. A midfield crossing alternate pattern entry should not be used when the pattern is congested. Descending into the traffic pattern can be dangerous, as one aircraft could descend on top of another aircraft already in the pattern. All similar types of aircraft, including those entering on the 45 degree angle to downwind, should be at the same pattern altitude so that it is easier to visually acquire any traffic in the pattern.

AC 90-66B

The other issue that sunny Sunday morning was confusing or confused radio calls and position reports. Using local landmarks like “the high school” doesn’t help folks who aren’t familiar with the area. As AC 90-66B notes:

Transient aircraft may not know local ground references, so pilots should use standard pattern phraseology, including distances from the airport.

AC 90-66B

The recommendations in the AC also note that:

When referring to a specific runway, pilots should use the runway number and not use the phrase “Active Runway,” because there is no official active runway at a non-towered airport. To help identify one airport from another when sharing the same frequency, the airport name should be spoken at the beginning and end of each self-announce transmission.

AC 90-66B

Finally, some of the transmission where confusing, perhaps because the pilot simply misstated a runway number, pattern leg, or intentions. For example, one pilot said, “Cirrus xxx, on a straight-out departure runway 21, coming back for a straight-in departure runway 3.” Those were slips of the tongue, but they certainly didn’t help others understand the pilot’s plan.

Other pilots reported entering the downwind from the north, probably via a direct entry (without a 45-degree leg), but it was hard to be sure, and at least one aircraft apparently flew inside another as they entered the downwind.

As you can see in the video, I made a 360-degree turn while on the 45 leg to create more space behind the Baron that joined downwind ahead of me after crossing over the airport at midfield. We were a little too close for my comfort, and I didn’t want to extend my downwind behind the twin, which needs more room to maneuver.

In the end, we all arrived safely, but the traffic pattern was more chaotic than necessary. Flying a few extra miles to set up west of the airport for a 45-degree entry would have allowed everyone more opportunities to develop good situational awareness, to minimize last-minute maneuvering near the airport, and to adjust the pattern to accommodate arrivals and departures.

Another note for pilots: My Bonanza is equipped with an altitude-compensating fuel pump. It adjusts the mixture based on ambient pressure, so even at high-altitude airports such as KSEZ, I set the mixture to full rich for takeoff and landing, and I check for the appropriate the fuel flow based on a table in the airplane flight manual. If your aircraft doesn’t have such a system, and most don’t, you should refer to the performance data in your POH or AFM and set the mixture according the the information in that handbook when operating at high density altitudes.

AIM Update: Approach Categories

FAA has released the January 30, 2020 update to the AIM. (Link to PDF and HTML editions here. You can read the explanation of changes here.)

The update includes several items of interest to IFR pilots, but one is of particular note here:

5−4−7. Instrument Approach Procedures
This change provides pilots with additional options when it is necessary to conduct an instrument approach at an airspeed higher than the maximum airspeed of its certificated aircraft approach category. It explains the flexibility provided in 14 CFR and emphasizes the primary safety issue of staying within protected areas.

Here’s the new text in that section:

a. Aircraft approach category means a grouping of aircraft based on a speed of Vref at the maximum certified landing weight, if specified, or if Vref is not specified, 1.3Vso at the maximum certified landing weight. Vref, Vso, and the maximum certified landing weight are those values as established for the aircraft by the certification authority of the country of registry. A pilot must maneuver the aircraft within the circling approach protected area (see FIG 5−4−29) to achieve the obstacle and terrain clearances provided by procedure design criteria.

b. In addition to pilot techniques for maneuvering, one acceptable method to reduce the risk of flying out of the circling approach protected area is to use either the minima corresponding to the category determined during certification or minima associated with a higher category. Helicopters may use Category A minima. If it is necessary to operate at a speed in excess of the upper limit of the speed range for an aircraft’s category, the minimums for the higher category should be used. This may occur with certain aircraft types operating in heavy/gusty wind, icing, or non−normal conditions. For example, an airplane which fits into Category B, but is circling to land at a speed of 145 knots, should use the approach Category D minimums. As an additional example, a Category A airplane (or helicopter) which is operating at 130 knots on a straight−in approach should use the approach Category C minimums.

c. A pilot who chooses an alternative method when it is necessary to maneuver at a speed that exceeds the category speed limit (for example, where higher category minimums are not published) should consider the following factors that can significantly affect the actual ground track flown:

1. Bank angle. For example, at 165 knots ground speed, the radius of turn increases from 4,194 feet using 30 degrees of bank to 6,654 feet when using 20 degrees of bank. When using a shallower bank angle, it may be necessary to modify the flight path or indicated airspeed to remain within the circling approach protected area. Pilots should be aware that excessive bank angle can lead to a loss of aircraft control.

2. Indicated airspeed. Procedure design criteria typically utilize the highest speed for a particular category. If a pilot chooses to operate at a higher speed, other factors should be modified to ensure that the aircraft remains within the circling approach protected area.

3. Wind speed and direction. For example, it is not uncommon to maneuver the aircraft to a downwind leg where the ground speed will be considerably higher than the indicated airspeed. Pilots must carefully plan the initiation of all turns to ensure that the aircraft remains within the circling approach protected area.

4. Pilot technique. Pilots frequently have many options with regard to flight path when conducting circling approaches. Sound planning and judgment are vital to proper execution. The lateral and vertical path to be flown should be carefully considered using current weather and terrain information to ensure that the aircraft remains within the circling approach protected area.

Proposal to Change VOR Equipment Test

A pilot has proposed removing the requirement to log the results of the VOR equipment test required by 14 CFR § 91.171 for operations under IFR.

You can read the original proposal, docket FAA-2019-0739, and comments at the Federal Register, here.

The change wouldn’t repeal the test itself, only the detailed requirements for recording the results as described in paragraph (d).

AOPA filed detailed comments in support of the proposal, here. The organization notes in part that: “The logging requirement is not a positive safety argument when a failed check is what is clearly the concern. A failed check is fully and effectively mitigated by the placarding requirement of 14 C.F.R. §91.213 and the obligations under 91.171(a).”

I support the proposal, but in comments that I submitted to the docket, I suggested additional changes, viz.:

  • Expand the current 30-day limit to a more reasonable interval, such as every three calendar months or six calendar months. Using the calendar month criterion would synchronize the interval with other regulatory requirements, such as the valid periods for medical certificates, annual inspections, flight reviews, and so forth.
  • Allow the use of an IFR-approved GNSS (i.e., a suitable RNAV system, as described in AIM 1−2−3 Use of Suitable Area Navigation (RNAV) Systems on Conventional Procedures and Routes, and as defined in various ACs, including AC 90−100A) to verify the accuracy of VOR equipment.

As I explained:

For example, a pilot tracking an airway or a course to/from a VOR with an IFR-approved GNSS could confirm that the VOR course shown by a CDI or bearing pointer is within the limits specified by the regulation. As other commentators have noted, FAA is gradually decommissioning VORs, and accomplishing the VOR equipment test will become increasingly difficult as navaids are removed from the NAS. Even given the inherent differences between the courses shown by GNSS and conventional navaids, as described in the AIM (1−1−17. Global Positioning System (GPS), Paragraph k. Impact of Magnetic Variation on PBN Systems), checking the accuracy of a VOR in this manner would be well within the six-degree error long permitted for airborne checks. Using GNSS would also be in keeping with current FAA policy about PBN in general, and specifically about using GNSS to fly conventional procedures while monitoring guidance from ground-based navaids.

Calling ATC for an IFR Clearance

The weather was barely VFR at Chehalis, WA (KCLS) for this night takeoff, so I called Seattle Center on the phone to get my IFR clearance and release for a flight back to Boeing Field (KBFI).

In 2019, FAA finished publishing ATC telephone numbers in the Chart Supplement, so you can get an IFR a clearance (or cancel IFR) directly with ATC, not via FSS, when operating at a non-towered airport or when a tower is closed.

You can listen to this process at the beginning of the video below and then follow along as I fly the ILS RWY 14R at Boeing Field (KBFI).

The audio panel/intercom in the A36 Bonanza supports a Bluetooth connection to my phone, so I’m able to speak and hear through my headset during phone calls. That feature makes it especially easy to contact ATC, in this case Seattle Center.

ADS-B and Call Sign Confusion

The ADS-B mandate has arrived, and with it comes the potential for another source of confusion. Most pilots flying with ADS-B systems have a display of traffic in the cockpit, either on a moving map that’s part of a GNSS navigation system or on a tablet like an iPad running an app such as ForeFlight, Garmin Pilot, or FlyQ. These traffic systems usually show the identification of other aircraft, either the registration number or the airline flight number.

ADS-B traffic (TIS-B) as shown in ForeFlight

When ATC issues traffic advisories–for example, “Cessna 1234A, traffic 2 o’clock, 4 miles, a Southwest 737”–it might be tempting to include the target identification in your acknowledgement. For example, “Cessna 1234A, we have Southwest 2345 in sight,” or “Southwest 2345 in sight, Cessna 1234A.”

If that sounds odd, watch some aviation videos on YouTube. At least one pilot flying an airplane with a new glass panel has made a habit of such replies.

For obvious reasons, it’s a bad idea to include another aircraft’s identification or call sign when you respond to ATC. In fact, the FAA’s December 2019 update to AC 90-114 Automatic Dependent Surveillance-Broadcast Operations anticipates this issue: Unless initiated by the controller, pilots should typically not use the call sign or Aircraft Identification (ACID) of observed traffic in radio communications, as this could create confusion for both ATC and pilots monitoring the frequency.

AC 90-114B

So even if you’re equipped with the latest technology, stick to the standard replies when ATC points out traffic:

“Cessna 1234A, traffic 2 o’clock, 4 miles, a Southwest 737.”

“Cessna 1234A, we have the Southwest 737 in sight,” or “Traffic in sight, Cessna 1234A.”

KHQM: RNAV Approach and Landing

I took advantage of a CAVU day in the Pacific Northwest and flew the A36 Bonanza from Boeing Field (KBFI) in Seattle to Hoquiam, WA (KHQM). To practice using the avionics, I flew the RNAV RWY 06 approach in VFR conditions.

Here’s video of the descent, approach, and landing.

Descent and approach to RWY 06 at KHQM