New Edition of AC 00-6 Aviation Weather

FAA has published a new edition of AC 00-6B – Aviation Weather (PDF), the 1975 handbook that explains weather theory for pilots.

New scientific capabilities now necessitate an update to this AC. In 1975, aviation users were not directly touched by radar and satellite weather. In 2016, much of what airmen understand about the current atmosphere comes from these important data sources. This AC is intended to provide basic weather information that all airmen must know. This document is intended to be used as a resource for pilot and dispatcher training programs.

The new edition of the companion handbook, AC 00-45 Aviation Weather Services, which explains aviation weather reports and forecasts and the briefings available to pilots, should be available soon from the FAA website.

FAA Updates Two Handbooks

FAA has released updated editions of two key handbooks for pilots and flight instructors.
The new version of Pilot’s Handbook of Aeronautical Knowledge (FAA-H-8083-25B) is a key reference for pilots training for the private pilot, commercial pilot, and flight instructor certificates.
PHAKCover

The Pilot’s Handbook of Aeronautical Knowledge provides basic knowledge that is essential for pilots. This handbook introduces pilots to the broad spectrum of knowledge that will be needed as they progress in their pilot training. Except for the Code of Federal Regulations pertinent to civil aviation, most of the knowledge areas applicable to pilot certification are presented. This handbook is useful to beginning pilots, as well as those pursuing more advanced pilot certificates.

The Weight & Balance Handbook (FAA-H-8083-1B) is aimed at pilots and maintenance technicians.

Weight-Balance-Cover

The Aircraft Weight and Balance Handbook has been prepared in recognition of the importance of weight and balance technology in conducting safe and efficient flight. The objective of this handbook is twofold: to provide the airframe and powerplant mechanic (A&P) with the method of determining the empty weight and empty weight center of gravity (EWCG) of an aircraft and to furnish the flight crew with information on loading and operating the aircraft to ensure its weight is within the allowable limit and the center of gravity (CG) is within the allowable range.

You can find free PDFs of these handbooks and other FAA training manuals on the FAA website here and here.

Short Aerobatic Videos

I have collected short excerpts from a recent aerobatic flight near Seattle, WA to demonstrate a few basic aerobatic maneuvers. Each video shows the maneuver first from the left wingtip and then from my perspective in the rear cockpit of the Extra 300L.

You can find many more videos at my YouTube channel, BruceAirFlying.

Latest Info on VOR Shutdowns

The FAA recently provided an update on its plans to decommission about 30 percent (308) of the existing network of 957 VORs by 2025. The presentation, made at the April 2016 meeting of the Aeronautical Charting Forum, is available here (PDF).

Some highlights:

As I’ve noted in previous posts on this topic (e.g., here), the basic plan remains as follows:

  • Decommission about 308 VORs in two phases. Phase 1 runs from FY2016-FY2020. Phase 2 runs from FY2021-FY2025.
  • About 649 VORs will remain in service. In fact, many of those VORs will be upgraded to expand their service volumes.
  • Most of the VORs to be shut down will be in the Central (162) and Eastern (131) U.S. Only about 15 VORs will be decommissioned in the West.

The list of the first VORs to be shut down is available from AOPA here (PDF). AOPA also has good background about the program to decommission VORs on its website.

To provide backups should GPS signals fail or be disrupted, the FAA will retain a minimum operational network (MON) of VORs and MON airports that have ILS and/or VOR approaches.

Those MON airports and VORs are designed to enable pilots to:

  • Revert from PBN [i.e., GPS-based] to conventional navigation in the event of a Global Positioning System (GPS) outage;
  • Tune and identify a VOR at a minimum altitude of 5,000 feet above ground level or higher;
  • Navigate to a MON airport within 100 nautical miles to fly an Instrument Landing System (ILS) or VOR instrument approach without Distance Measuring Equipment (DME), Automatic Direction Finder (ADF), surveillance, or GPS where the capability currently exists; and
  • Navigate along VOR Airways especially in mountainous terrain where surveillance services are not available and Minimum En Route Altitudes (MEAs) offer lower altitude selection for options in icing conditions.

You can learn more about MON airports in this presentation (PDF) from the ACF meeting.

Early Summer Aerobatic Ride

Here are highlights from an early summer aerobatic ride in the Extra 300L east of Seattle.

The passenger from Switzerland enjoyed the view of the “Cascade Alps” east of Seattle as we flew through a series of aileron rolls; loops, half-Cuban 8s; big, lazy barrel rolls; slow rolls; hammerheads, and a little inverted flight.

 

 

Use of IFR GPS on Conventional Approaches

FAA has published an update to the AIM, effective 26 May 2016, and it includes a big change if you have an IFR-approved GPS [i.e., a “suitable navigation system” as defined in AC 20-138 and AIM 1-2-3 (b).]

Now, if you fly a conventional approach based on a VOR or NDB (but not a localizer), you can fly the procedure entirely with the GPS, provided you can monitor (using a separate CDI or a bearing pointer) the VOR or NDB facility specified for the approach.

The new language is in section 1−2−3. Use of Suitable Area Navigation (RNAV) Systems on Conventional Procedures and Routes.

The summary of changes to this AIM update notes that:

This change allows for the use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure (IAP) based on a VOR, TACAN, or NDB signal. The underlying NAVAID must be operational and monitored for the final segment course alignment.

The new text in the AIM is in paragraph 5 of AIM 1-2-3:

5. Use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure based on a VOR, TACAN or NDB signal, is allowable. The underlying NAVAID must be operational and the NAVAID monitored for final segment course alignment.

This change is the result of a discussion at the Aeronautical Charting Forum in 2014.

Changes in AIM Effective 26 May 2016

FAA has published an update to the AIM, effective 26 May 2016, and it includes several important changes of interest to typical general-aviation pilots:

1−2−3. Use of Suitable Area Navigation (RNAV) Systems on Conventional Procedures
and Routes

This change allows for the use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure (IAP) based on a VOR, TACAN, or NDB signal. The underlying NAVAID must be operational and monitored for the final segment course alignment. [For more information about this item, see the detailed discussion here.]

3−2−3. Class B Airspace
This change adds an RNAV Receiver as an option for instrument flight rule (IFR) navigation requirement IAW 91.131 (c)(1).

3−2−6. Class E Airspace

This change updates the definition, vertical limits, and types of Class E airspace. The change more accurately reflects Class E airspace regulatory information in 14 CFR Part 71 and more clearly states that Class E arrival extensions have the same effective times as the airport surface area airspace….

4−3−22. Option Approach
This changes adds verbiage advising pilots to inform air traffic control (ATC) as soon as possible of any delay clearing the runway during their stop−and−go or full stop landing.

5−2−8. Instrument Departure Procedures (DP) − Obstacle Departure Procedures (ODP) and Standard Instrument Departures (SID)
This change adds language advising pilots what to expect when vectored or cleared to deviate off of an SID.

5−4−1. Standard Terminal Arrival (STAR) Procedures
This change adds language advising pilots what to expect when vectored or cleared to deviate off of a STAR. Pilots should consider the STAR cancelled. If the clearance included crossing restrictions, controllers will issue an altitude to maintain. It also adds language advising pilots when to be prepared to resume the procedure. Since all clearances on STARS will not include Descend Via clearances, the word “will” was replaced with “may.”

5−4−7. Instrument Approach Procedures
This change adds a note to provide guidance to pilots regarding what to expect when clearances are issued by ATC to altitudes below those published on IAPs.