I recently completed a long cross-country flight from Boeing Field (KBFI) in Seattle to Nashua, NH (KASH) to participate in a recording session at Pilot Workshops, which produces a range of training and proficiency products for pilots. I am a regular contributor to the IFR Mastery series of IFR scenarios. After the work in Nashua, I returned to Seattle via a southern route.

I have flown many true cross-country, even coast-to-coast, trips, VFR and IFR. I have ferried airplanes, traveled to events such as EAA AirVenture, helped Pilots N Paws get pets to new homes, and made many personal treks throughout the West. But this trip was my first coast-to-coast flight with all the tools and resources currently available to a GA pilot.

For several reasons, I chose to fly the A36 rather than ride the airlines. It had been a couple of years since I’d made such a long-distance trip in the Bonanza, and I wanted to exercise the latest avionics upgrades (viz., G500 TXi, GTN 750Xi, and GFC 600 autopilot) that had been installed just as the pandemic began. Of course, I was an early adopter of ForeFlight on an iPad Mini, connected to the panel with a Flight Stream 510. I also wanted to avoid crowded airliners and airport terminals, and I visited friends along the way.
Videos from the Flight
Videos from the trip are available at my YouTube channel. See the Across the U.S. in a Bonanza playlist to watch the flights in the order flown, including videos of three sightseeing trips not included in the data below.
The video below shows the landings at all the stops along the route.
Flight Statistics
Here are the basic statistics for the round-trip flight, not including three side trips. To view each planned route of flight on a chart at SkyVector.com, click the links in the Flight Leg column.
Flight Leg | Dist Flown (nm) | Direct (nm) | Hobbs Time | Block Time | ||
KBFI-KBIL | 604 | 577 | 3.5 | 4.3 | ||
KBIL-KABR | 437 | 426 | 2.7 | 3.1 | ||
KABR-KSBM | 515 | 464 | 3.2 | 3.9 | ||
KSBM-KASW | 294 | 288 | 2.1 | 2.4 | ||
KASW-KELM | 422 | 405 | 2.7 | 3.4 | ||
KELM-KASH | 257 | 242 | 1.6 | 2.4 | ||
KASH-KFDK | 341 | 334 | 2.2 | 3.0 | ||
KFDK-KOWB | 475 | 471 | 3.5 | 3.8 | ||
KOWB-KPWA | 526 | 523 | 3.4 | 3.8 | ||
KPWA-KTDW | 212 | 206 | 1.6 | 1.8 | ||
KTDW-KAEG | 253 | 245 | 1.9 | 2.4 | ||
KAEG-KBVU | 413 | 398 | 3.1 | 3.4 | ||
KBVU-KBDN | 630 | 569 | 3.7 | 4.1 | ||
KBDN-KBFI | 246 | 211 | 1.4 | 1.7 | ||
Totals | 5625 | 5359 | 36.6 | 43.5 |
Direct v. Airways
Of course, a nonstop direct route on a trip of this length isn’t possible in a typical single-engine piston. For example, I chose to fly airways across the Cascades and Rockies on the first segment to Billings (KBIL), but even that route isn’t significantly longer than a direct flight (603 nm versus 577 nm).
I also flew west via a T-route around the Chicago Class B airspace on the IFR leg from KSBM to KASW rather than file a direct route across Lake Michigan (294 nm flown v. 288 nm direct).
As you can see in the summary table above, the total distance I flew (as recorded in ForeFlight) was, in the end, only 266 nm longer than direct routes would have been. That’s just a couple of hours’ flying time in the A36, even on such a long round trip of 5625 nm and some 37 hours of Hobbs time. And in the real world, zigs and zags to avoid weather and SUA airspace or to follow ATC vectors always add to theoretical direct distances. For a detailed discussion of this point, see Flying (and Filing) Direct v. Airways.
Transformational Tech
Before I get into specifics about the technology that I used, let me emphasize a key point. New avionics and services such as SiriusXM and FIS-B don’t make the airplane more capable. Even with a modern glass panel, my A36 can’t fly higher, faster, or father than it did when it left the factory in 1989. It still can’t tango with ice or duel with thunderstorms.
And state-of-the-art, integrated avionics–including a modern digital autopilot that’s fully connected to the other boxes in the panel–may not be necessary for typical IFR flights of 2-3 hours to familiar places.
Of course, technology like WAAS does make more approaches with precision-like minimums available. (For details about forthcoming changes to the definition of precision approach, see Draft AC 90-119 Performance-Based Navigation Operations.) As of October 2021, there were 1291 category 1 ILS approaches in the U.S. system. At present, nearly 4100 approaches offer LPV minimums; almost 1200 of those procedures are at airports not served by an ILS.
The ability to fly those RNAV (GPS) procedures offered more options on a couple of IFR legs, and it certainly reduced the stress of flying over areas of widespread IFR. Except in the sparsely populated West, I always had several airports with LPV minimums available nearby. Basic GPS was also vital. Several VORs and DMEs were out of service, or procedures were NA unless your aircraft was equipped with a “suitable RNAV system” based on GPS.
More Capable Pilots
But the benefits of the latest avionics and associated technology go beyond flying specific IFR procedures. We all recognize that tools like ForeFlight make planning, filing, and adapting while enroute much easier than in the days of paper charts and phone calls to FSS. A modern glass panel, besides being more reliable than a set of mechanical gauges, helps you collect and process information and reduces time spent estimating ground speed, fuel requirements, and other details, leaving more brain cycles for maintaining situational awareness and making informed decisions before a situation becomes tense.
In other words, today’s avionics and related technologies make you–the pilot–more capable, if you use them wisely.
For example, ForeFlight’s organized preflight briefings guided me through the details of complex weather and helped me review NOTAMS and other information. Not taking dictation from an FSS briefer meant I could see, absorb, and interpret important information, especially when operating in unfamiliar areas. I felt well prepared for each leg.

Features such as recommended routes simplified flight planning and gave me more time to consider options. Choosing a recommended route also meant I was always cleared as filed, reducing potential for confusion and errors before takeoff. Flight Stream connectivity made data entry errors less likely and saved time before takeoff because I could send routes directly from ForeFlight to the GTN 750Xi.
ForeFlight also helped me choose IFR alternates, which I selected not just to meet legal requirements, but also based on comments about FBOs, fuel prices, and availability of services, all of which were presented in the app. Note that I didn’t choose airports with the cheapest fuel. I selected airports that offered or were near services such as maintenance, hotels, rental cars, and airline rides, should they have been needed. (Thankfully, the A36 performed flawlessly.)
The performance calculations in ForeFlight were surprisingly accurate. When I checked my actual progress against the ForeFlight navigation log, I was always within a minute or two of the ETA at a particular fix and fuel used was within a couple of gallons of the preflight estimates.
Speaking of fuel, I had CiES fuel senders installed as part of the last panel update. I had calibrated and proven them before I launched on the trek to the East Coast, but they showed their value on this flight. I always knew exactly how much fuel I had used, and checking the fuel computer in the GTN 750 Xi at every tank switch confirmed that I would have at least my one-hour reserve when I landed, even if my route had changed. I impressed the line techs at each stop with my estimates, always within one gallon, of how much fuel would be needed to top the tanks.
In the past, I carried boxes of paper charts that might expire at some point. In fact, a data update occurred while I was enroute to NH, but updating both ForeFlight and the boxes in the panel took only a few minutes. More importantly, I knew that I always had the proverbial “all available information”–including charts, the Chart Supplement, and other data–while preparing for and flying a leg, regardless of how many boundaries I crossed.
SiriusXM satellite weather, not limited by range like FIS-B, is valuable on long trips. But even FIS-B weather is a godsend, especially when displayed on a tablet and in the panel. On the leg to KSBM, I could see far ahead of ATC, and I requested a reroute that kept me clear of an area of thunderstorms as they moved north, away from my destination.
Enduring Impressions
This trip reinforced impressions from earlier cross-country adventures.
I’m always surprised by how empty the skies can seem. I certainly didn’t see many aircraft, except at airports. And often I was tempted to ask ATC for radio check to make sure that the quiet frequency wasn’t a sign of a radio failure in my airplane.
ATC provided professional, helpful service no matter where I flew. The accents of the controllers changed subtly as I cruised into different regions of the country, but the calm efficiency of the folks on the other side of the conversation didn’t vary, even when weather and traffic complicated the situation.
I waited out a couple of vigorous fronts, both in Maryland and in Albuquerque, but in general, the weather cooperated. I had only three solid IFR legs, and ice, thunder, and other hazards never threatened. I always had comfortable alternatives.
And finally, a modern digital autopilot is transformational. At a basic level it reduces mental and physical fatigue. But having confidence in its ability reliably to fly procedures, and new features such as VNAV, make single-pilot IFR operations immeasurably safer and more comfortable. In fact, although I flew this trip solo, I operated as if I were as part of crew, and that made the adventure across the astonishing variety of landscapes that is America not only possible, but enjoyable.
Thanks Bruce. Nice write up. I like the videos as more information as well.
I guess I should have put a bit more info in my post. I did a similar trip but from Raleigh, NC to Port Angeles, WA, stopping in some awesome places along the way. I used many of your videos about the WA area, and crossing the mountains. We did it in a V35 Bonanza, with my 18 year old son. It was an amazing journey. Thank you for making content like this to help pilots feel more comfortable about making journeys like this.
I’m glad you enjoyed your trip. Bonanzas are wonderful traveling machines, and the Pacific Northwest offers an amazing variety of scenery to enjoy.