Demonstrating, Teaching, and Practicing Stalls

Debates about how to teach, practice, and demonstrate stalls continue, usually vociferously, after more than century of powered flight. In the U.S., FAA guidance on the topic has evolved to the current standards, described in the Airmen Certification Standards and the references (viz., handbooks and ACs) that expand on the tasks applicants are required to demonstrate.

Airplane Flying Handbook, Figure 4-7
Private Pilot ACS Task VII

Of course, the ACS is not a syllabus–a detailed sequence of lessons that describes the training required for a certificate or rating. The ACS is the guide examiners use during a practical test to determine whether an applicant is qualified for a new piloting privilege. The ACS samples an applicant’s knowledge and skill. It is the final exam, not the course.

The current edition of the Airplane Flying Handbook (FAA-H-8083-3B) includes detailed descriptions of the stall tasks in the ACS for private pilot and commercial pilot applicants. But that guide also offers guidance to flight instructors about how to introduce and teach stall-related skills. For example:

The practice of impending stalls is of particular value in developing the pilot’s sense of feel for executing maneuvers in which maximum airplane performance is required. These maneuvers require flight in which the airplane approaches a stall, but the pilot initiates recovery at the first indication, such as by a stall warning device activation. Impending stalls may be entered and performed in the same attitudes and configurations as the full stalls or other maneuvers described in this chapter. However, instead of allowing the airplane to reach the critical AOA, the pilot must immediately reduce AOA once the stall warning device goes off, if installed, or recognizes other cues such as buffeting. Hold the nose down control input as required to eliminate the stall warning. Then level the wings maintain coordinated flight, and then apply whatever additional power is necessary to return to the desired flightpath. (AFH FAA-H-8083-3B, 4-8)

Unfortunately, many CFIs still introduce stalls by jumping right into demonstrating the power-off and power-on stalls as described in the ACS. Those demos often confuse and frighten students, and as the Aviation Instructor’s Handbook emphasizes, if you’re scared, you can’t learn.

A previous edition of the AFH offered additional, detailed advice about how to introduce stalls:

Usually, the first few practices should include only approaches to stalls, with recovery initiated as soon as the first buffeting or partial loss of control is noted. In this way, the pilot can become familiar with the indications of an approaching stall without actually stalling the airplane. Once the pilot becomes comfortable with this procedure, the airplane should be slowed in such a manner that it stalls in as near a level pitch attitude as is possible. The student pilot must not be allowed to form the impression that in all circumstances, a high pitch attitude is necessary to exceed the critical angle of attack, or that in all circumstances, a level or near level pitch attitude is indicative of a low angle of attack. Recovery should be practiced first without the addition of power, by merely relieving enough back-elevator pressure that the stall is broken and the airplane assumes a normal glide attitude. The instructor should also introduce the student to a secondary stall at this point. Stall recoveries should then be practiced with the addition of power to determine how effective power will be in executing a safe recovery and minimizing altitude loss. (FAA-H-8083-3B, 4-5)

Here’s an example of that technique during a flight with a student in my Extra 300L, a high-performance aerobatic airplane.

I always show pilots the basic stall characteristics of the airplane before we move on to accelerated stalls, incipient spins, and the like.

You can find a series of videos that show stalls and spins at my YouTube channel, here.

If more instructors would follow that advice when introducing slow flight and stalls, perhaps we’d see fewer articles such as Be Afraid of Stalls, that advocate omitting stalls from pilot training, and more pilots would understand how best to avoid the stalls that result in accidents.

Upset Recovery Exercises

The video below shows a series of practices I use with students in my stall/spin/upset recovery course. They fly modified barrel rolls to become familiar with all-attitude flying, to fly the airplane through its speed range, and to develop G-awareness. Next, we fly the same maneuver, but we deliberately stall the airplane at the top of the loop/roll, first in coordinated flight, then in skids and slips. These practices show the student what happens during botched maneuvers and they’re also great practice should they ever experience an upset due to wake turbulence, disorientation, or other factors. Students also learn about accelerated stalls in the vertical–the effect of abruptly increasing angle of attack, even when diving toward the ground.

You can find more videos at my YouTube channel, BruceAirFlying. The Stalls and Spins playlist focuses on those exercises.

To learn more about making aviation videos, see Aviation Video Tips.

Accelerated Spin Demonstrations

It’s important to use the correct sequence of control inputs when recovering from a developed spin. Absent specific guidance from the aircraft manufacturer in the aircraft flight manual (also known as the POH), the PARE technique taught by Rich Stowell is a proven sequence.

PARE:

  • Power—idle
  • Ailerons—neutral
  • Rudder–full opposite direction of spin
  • Elevator–forward to reduce angle of attack and break the stall.

This video shows what typically happens if you push forward on the stick or yoke before you apply rudder. The spin accelerates. That rapid, changing rotation can disorient the pilot and delay recovery.

To learn more about stalls and spins, visit my website.

Accelerated Spins

To see more stall/spin videos, visit my Stalls and Spins playlist on my YouTube, channel, BruceAirFlying.

A Collection of Stall/Spin Videos

I’ve created a YouTube playlist, Stalls and Spins,  that features videos I recorded while demonstrating a variety of stalls, incipient spins, and spins. Most of the videos were captured while I flew the Extra 300L; a few show stalls in the Beechcraft A36.

You can learn more about the stall/spin/upset training that I offer in the Extra 300L at my website, here

Here’s a video from the playlist:

Stalls from Skidding and Slipping Turns

Aerobatic Practice and Camera Test

After several weeks away from flying aerobatics, I took the Extra 300L up for practice and to check out the new camera position at the left wingtip. Keen observers will note bobbles on the rolls and other flaws, but that’s why we practice. As you can see, it was a lovely day to fly over the desert southeast of Las Vegas.

Incipient, Upright, and Inverted Spins

Here’s a quick demonstration of incipient spins from skidding and slipping turns, plus a classic spin from a slow-deceleration stall. Finally, I show an inverted spin. This video features views from both the left wingtip and the pilot’s perspective.

For more information, see my stall/spin page at BruceAir.com.

BruceAir Featured on AOPA Live

Here’s a the YouTube video of this week’s AOPA Live. Rod Machado’s segment explains the effects of stalls while yawing, and he uses video I shot with one of my customers to illustrate the point.

This segment begins at 19:37 into the program, and this link takes you directly to that portion of the video. As host Tom Haines notes, it’s “heart-stopping excitement.”

You can find more videos recorded during training sessions and aerobatic rides on my YouTube channel, BruceAirFlying. Information about my training programs, books, and resources for pilots is at my website, www.BruceAir.com.

Student Spin Practice

This video shows a student practicing spins. We begin with a normal spin to the left. Observe how a typical spin develops. Next, we see the effects of pushing the stick forward before the rotation stops, and then we see the effect of adding power during a spin. These exercises show the importance of understanding and following the correct sequence of control inputs to recover from a spin. The video also shows several secondary, accelerated stalls during one spin recovery. For more information about the PARE spin-recovery sequence, visit the website for Rich Stowell’s Aviation Learning Center.