New FAA Policy on Flight and Aviation Training Devices

On January 2, 2014, the FAA published a Notice of Policy Change for the Use of FAA Approved Training Devices in the Federal Register. The change, issued without consulting the aviation training community, will make it harder for instructors and flight schools to use ATDs. In the words of the Society of Aviation and Flight Educators:

“FAA officials, understanding the value of simulators in flight training, have been issuing these LOAs since 1980,” said [executive director Doug] Stewart.  “This proposed policy change will take away much of the incentive for pilots to improve their skills in a better classroom than a noisy cockpit.”

I have prepared my own comments on the new policy, which you can read below.

Federal Aviation Administration
AFS-810, Airmen Certification and Training Branch
800 Independence Ave. SW. Washington, DC 20591

RE: Agency/Docket Number: FAA-2013-0809 / Document Number: 2013-31094.

Greetings,

I am disappointed to learn of the “Notice of Policy Change for the Use of FAA Approved Training Devices” published in the Federal Register on January 2, 2014 (Agency/Docket Number: FAA-2013-0809 / Document Number: 2013-31094).The change, announced without consulting the flight training community, represents a step backward in encouraging and broadening the use of interactive tools that help pilots safely and efficiently learn critical concepts, develop fundamental skills, and maintain proficiency during initial training and throughout their flying careers.

The new policy also runs counter to several of FAA’s own initiatives, from the approval of aviation training devices (ATD) to the emphasis on scenario-based training, both in FITS-oriented programs and in the latest editions of the practical test standards, which emphasize aeronautical decision making, resource management, and related skills that are ideally suited for introduction and practice in training devices. Indeed, FAA-accepted FITS syllabi all emphasize the use of training devices from lesson one.

To quote from my latest book about the use of PC-based flight simulations to complement flight training:

FAA-Industry Training Standards (FITS) is a joint initiative between the aviation industry and the Federal Aviation Administration:

  • To make pilot training more relevant as technology rapidly transforms aircraft cockpits, and
  • To help flight instructors use new tools (especially simulation) and teaching methods to increase the effectiveness and efficiency of flight instruction…

The ultimate goal is to reduce the number of aviation accidents and incidents by emphasizing and addressing the perennial cause of most crashes—pilot error.

The FITS approach includes several key components:

  • Scenario-Based Training (SBT)
  • Extensive use of simulation
  • Aeronautical Decision Making (ADM)
  • Risk Management

Often overlooked amid the jargon, however, is an important and beneficial side effect of scenario-based training [complemented extensively with simulation]—it makes learning to fly…more interesting, challenging, and fun. In other words, SBT creates “adventures for learning” that:

  • Give you realistic reasons—missions—to fly
  • Present real-world challenges such as changing weather, equipment malfunctions, pressures from passengers, and other unexpected circumstances, that pilots must handle even on routine flights
  • Help you measure your progress against specific goals
  • In short, FITS focuses on teaching you to think like a pilot.

All of those goals are best addressed by using a combination of tools and resources—including and especially simulation—during training.

The Aviation Instructor’s Handbook (FAA-H-8083-9A), while not specifically addressing flight simulation, emphasizes the value of interactive technologies (see, for example, “Instructional Aids and Training Technologies” in Chapter 4, “The Teaching Process”). The GA flight-training industry, airline, and military flight training programs all make extensive use of simulation, including part-task trainers and training devices (even those not specifically approved by FAA), because these tools have proven their value.

The new policy is also at odds with FAA’s description of ATD in AC 61-136, FAA Approval of Basic Aviation Training Devices (BATD) and Advanced Aviation Training Devices (AATD). That document describes a BATD as:

…a training platform for at least the procedural aspects of flight relating to an integrated ground and flight instrument training curriculum.

According to the same AC, the more sophisticated AATD:

Provides a training platform for both procedural and operational performance tasks related to ground and flight training towards private pilot, commercial pilot, and airline transport pilot certificates, a flight instructor certificate, and instrument rating.

Note that both of those descriptions emphasize “integrated ground and flight instruction” and “procedural and operational tasks.” ATDs are deliberately named Aviation Training Devices (not simulators) because the primary goal in using them isn’t to hone stick-and-rudder skills in a specific make and model of aircraft. Instead, as noted above, they are tools that help aviators, throughout their training, think like pilots.

The policy change is apparently an attempt to update FAA guidance with respect to the rapidly developing technology of flight simulation. But focusing on details such as display refresh rates and latency (in milliseconds) and the form of the physical controls for a simulation also runs counter to FAA’s own standards for ATDs and various levels of FTD.
For example, the standards in AC 61-136 note that:

(1) Flight dynamics of the ATD should be comparable to the way the represented training aircraft performs and handles. However, there is no requirement for an ATD to have control loading to exactly replicate any particular aircraft. An air data-handling package is not required for determination of forces to simulate during the manufacturing process.

(2) Aircraft performance parameters (such as maximum speed, cruise speed, stall speed, maximum climb rate, and hovering/sideward/forward/rearward flight) should be comparable to the aircraft or family of aircraft being represented.

As AC 61-136 also notes:

The GA community is using this evolving simulation technology to provide increasingly effective training capabilities at reduced cost…FAA has determined that instructors can successfully teach procedural understanding of certain flight tasks during training using the flight simulation devices described in this AC.

FAA has presented no evidence that the current system of LOAs and technical standards for ATDs and FTDs has led to significant issues in training or proficiency because the devices themselves are somehow technically deficient, obsolete, or poorly maintained. Indeed, competition and innovation in the industry continues to drive the introduction of improved and more capable training devices.

ATDs and FTDs have proven their value in training. They make it possible—safely, efficiently, and economically—to:

  • Introduce new concepts and skills
  • Help students overcome learning plateaus and maintain proficiency
  • Allow trainees and instructors to explore realistic scenarios that may be impractical or unsafe in an aircraft.

Policy changes that discourage the use of training devices by making compliance and approval needlessly expensive and time-consuming (both for the industry and overworked FAA inspectors) run counter to FAA’s laudable goal of reducing accident rates, pilot deviations, and related issues. FAA should promote—not encumber—the use of ATDs and FTDs and, as always, rely on the professionalism of flight instructors, training providers, and the network of DPEs to ensure that pilots earning new certificates and ratings are prepared to be aviators.

Regards,
Bruce Williams
Certified Flight Instructor
FAASTeam Representative Seattle, WA

Author of:
Scenario-Based Training with X-Plane and Microsoft Flight Simulator (Wiley & Sons, 2012; ISBN 978-1-1181-0502-3)
Microsoft® Flight Simulator as a Training Aid: A Guide for Pilots, Instructors, and Virtual Aviators (ASA, revised 2013, ISBN 978-1-61954-049-1)

Draft AC 61-136A: FAA Approval of Aviation Training Devices and Their Use for Training and Certification

FAA has released the draft of an update to the advisory circular that sets FAA standards for Aviation Training Devices (ATD) and how the agency approves their use in pilot training programs.

FAA updated AC 61-136 in September 2018. You can read about those changes at New AC for ATDs.

On June 27, 2018, the FAA published several key changes to 14 CFR Part 61 that govern the use of ATD to maintain IFR currency. You read about that changes at BruceAir here.

The draft AC 61-136A will supplant AC 61-136 when it is adopted.

I’ve looked over the proposed changes, and I discuss the key changes below.

You can learn more about ATDs, which include Basic Aviation Training Devices (BATD) and Advanced Aviation Training Devices (AATD), in my latest book about PC-based flight simulations, Scenario-Based Training with X-Plane and Microsoft Flight Simulator.

ATDs are not Simulators

It’s important to understand that Aviation Training Devices are not simulators. As you can see from the definitions below, ATDs are devices that include:

…hardware and software necessary to represent a category and class of aircraft (or set of aircraft) operations in ground and flight conditions…

ATDs are intended to:

Provide an adequate training platform for both procedural and operational performance tasks specific to … ground and flight training requirements

But they are not required to be substitutes for specific aircraft. In other words, they are training aids intended to help pilots learn, practice, and master aviation-related tasks and procedures.

No Regulation Changes

It’s also important to note that the proposed AC won’t change any FAA regulations that govern the use of ATDs and how much simulator time you can credit toward the minimums required for pilot certificates and ratings:

This AC does not change regulatory requirements; therefore, the provisions of the current regulation always control. This AC applies only to the evaluation and use of BATDs and AATDs. This notice does not apply to Full Flight Simulators (FFS) and Flight Training Devices (FTD) that are regulated under 14 CFR part 60.

Specifically, the AC does not change the amount of simulator time that may be credited toward the requirements for certificates and ratings as specified in:

a. 14 CFR part 61, §§ 61.4, 61.51, 61.57, 61.65, 61.109, 61.129, and 61.159.

b. 14 CFR part 141, §§ 141.41, 141.55, 141.57, and appendices B, C, D, E, F, G, I, K and M.

Logging Training Time and Experience

However, the updated AC does include language that clarifies how pilots and instructors should document the time they spend using ATDs:

Authorized instructors utilizing an FAA approved ATD for airmen certification, pilot time, and experience requirements are required to log the time in a pilot logbook as dual instruction and as BATD or AATD time appropriately. Any columns that reference flight time should remain blank when logging ATD time. Simulated instrument time can be logged in an ATD, but only during the time when the visual component of the training session is configured for instrument meteorological conditions (IMC) and the pilot is maintaining control solely by reference to the flight instruments. Logging time in this fashion will allow a pilot to credit this time towards the aeronautical experience and recent experience requirements as specified in part 61 or 141. It is recommended that a notation be included in the remarks section of the pilot logbook indicating the device name and manufacturer as described in the LOA. It is the responsibility of the flight instructor, student, or certificated pilot to verify the device is qualified and approved for certification or experience requirements. It would be appropriate for the person using the ATD to retain a copy of the LOA.

NOTE: There are no restrictions on the amount of training accomplished and logged in training devices. However, the regulatory limitations on maximum credit allowed for the minimum pilot certification requirements are specified by 14 CFR part 61 and part 141 and in the LOA. No approvals or authorizations are provided for aircraft type ratings using aviation training devices.

New Five-Year Re-Authorization Requirement

Paragraph 8 (b) of the proposed AC requires that all approved training devices will require re-authorization on a five year schedule:

All FAA approved training devices that are not evaluated or approved by the National Simulator Program in Atlanta, GA (AFS-205 under 14 CFR part 60), come under the evaluation, approval and control of the General Aviation and Commercial Division (AFS-800). AFS-800 has determined that all devices will require re-authorization on a five year schedule. This evaluation ensures current standards required by this advisory circular continue to be met. After June 1, 2015, all approvals for ground trainers, simulators (except Level A, B, C, and D), Level 1-3 FTD’s, PCATD’s and ATDs with authorizations that were either not issued by AFS-800 or do not contain an expiration date will terminate. The manufacturer must request this re-evaluation no later than 180 days prior to June 1, 2015.

Definitions of ATD and BATD Remain Essentially the Same

The new AC does not appear to change the basic definitions of ATD, BATD, or AATD. But there are some subtle distinctions in some of the descriptions.

Aviation Training Device (ATD)

As in the current AC 61-136, an ATD (the general term for either a BATD or AATD) is defined as:

A replica of aircraft instruments, equipment, panels, and controls in an open flight deck area or an enclosed aircraft cockpit. It includes the hardware and software necessary to represent a category and class of aircraft (or set of aircraft) operations in ground and flight conditions having the full range of capabilities of the systems installed in the device as described within this AC for the specific basic or advanced qualification level.

Basic Aviation Training Device (BATD)

The current AC 61-136 defines a BATD as a device that:

(2) Provides a training platform for at least the procedural aspects of flight relating to an integrated ground and flight instrument training curriculum

The proposed update adds some specificity to those criteria:

(2) Provides an adequate training platform and design for both procedural and operational performance tasks specific to the ground and flight training requirements for Private Pilot Certificate and Instrument Rating per Title 14 of the Code of Federal Regulations 14 CFR parts 61 and 141;

(3) Provides an adequate platform for both procedural and operational performance tasks required for instrument experience and pilot time

AATD

The same basic changes also apply to Advanced Aviation Training Devices (AATD), although an AATD can also be used for training toward the ATP and CFI certificates. An AATD is a device that:

(1) Meets or exceeds the criteria outlined in Appendix 2 (BATD Requirements);

(2) Meets or exceeds the criteria outlined in Appendix 3 (AATD Requirements);

(3) Provides an adequate training platform for both procedural and operational performance tasks specific to the ground and flight training requirements for Private Pilot Certificate, Instrument Rating, Commercial Pilot, and Airline Transport Pilot Certificate, and Flight Instructor Certificate, per Title 14 of the Code of Federal Regulations (CFR) parts 61 and 141;

(4) Provides an adequate platform and design for both procedural and operational performance tasks required for instrument experience, the instrument proficiency check and pilot time

The details of how an AATD may be used in such training will be specified in the LOA for that device:

AUTHORIZED USE. Except for specific aircraft type training and testing, an AATD may be approved and authorized for use in accomplishing certain required tasks, maneuvers, or procedures as applicable under 14 CFR parts 61 and 141. The FAA will specify the allowable credit in the AATD LOA for Private Pilot, Instrument Rating, instrument recency of experience, Instrument Proficiency Check, Commercial Pilot, and Airline Transport Pilot.

More Detailed Qualification Criteria

Manufacturers of ATDs will need to review the proposed AC carefully. It includes more detailed standards that ATDs must meet for FAA approval, and it specifies how manufacturers must inform the FAA when they update or make substantial changes to their devices.

The proposed AC also addresses compatibility of the software and hardware used in ATDs:

a. An approved ATD consists primarily of two components: software (programming) and hardware (central processor, monitor or display, appropriate flight and power controls, and avionics). The software and hardware components must be compatible because the hardware sends “values” from sensors to the software by means of voltage and digital inputs (e.g., avionics frequencies, switches, and buttons). Hardware and software compatibility are assured when the hardware manufacturer and the software developer work in close cooperation to develop the correct union of inputs for the ATD.

b. In some cases, the hardware manufacturer and the software developer do not work together in developing the ATD. Instead, the software is “licensed for use” to the ATD manufacturer and incorporated into the device. In those cases, the manufacturer must attest in writing (in the QAG) that all hardware technical requirements (analog and digital input values) are compatible with the software used in the ATD. To do so, the manufacturer should obtain a “compatibility statement” from the software developer, which may, at the FAA’s discretion, be used to satisfy this requirement. The following is an example compatibility statement:

“This is to certify that <Name of Software Company or Developer> has demonstrated that the operating system software <Software part number and version/revision>, is compatible with <Name of ATD Manufacturer, Make and Model> and can assure that the communications/transport data latency is not greater than 200 milliseconds and all analog and digital input signals meet the performance criteria established for software performance by the ATD manufacturer.”

c. Only the owner or co-developer can validate certification of the transport delay time stated in Appendix 2 and the correct analog and digital inputs necessary to ensure that the software performs adequately. Similarly, the software developer must determine the minimum computer requirements to effectively run the software.

Approval of ATD for use Under Part 61

According to the AC, to be approved for use for pilot training and certification under part 61, an ATD should:

a. Be capable of providing procedural training in all areas of operation for which it is to be used. Those tasks should be specified in an acceptable training curriculum or as specifically authorized by the FAA and meet the description and suggested criteria outlined in Appendix 4.

Approval of ATD for use Under Part 141

As you might expect, the process for approval for use under Part 141 includes an endorsement from a flight school’s principal operations inspector:

The jurisdictional FSDO may approve an ATD as part of an overall part 141 school curriculum approval and certification process. Pilot schools that want to use an ATD as part of their training curriculum must notify their principal operations inspector (POI). The POI is responsible for approving how the ATD is to be used in the certificate holder’s part 141 curriculum and Training Course Outline (TCO).

Flight Dynamics (Flight Modeling)

As under the present guidance, there is no requirement for an ATD to have control loading to exactly replicate any particular aircraft. An air data-handling package is not required for determination of forces to simulate during the manufacturing process. Such detailed and accurate representations of specific aircraft are required only for Flight Training Devices and Full Flight Simulators.

The new AC, does, however, require manufacturers to include a performance table for each aircraft configuration represented in an ATD:

 (1) Flight dynamics of the ATD should be comparable to the way the represented training aircraft performs and handles. However, there is no requirement for an ATD to have control loading to exactly replicate any particular aircraft. An air data-handling package is not required for determination of forces to simulate during the manufacturing process.

(2) Aircraft performance parameters (such as maximum speed, cruise speed, stall speed, maximum climb rate, and hovering/sideward/forward/rearward flight) should be comparable to the aircraft or family of aircraft being represented. A performance table will need to be included in the QAG for each aircraft configuration for sea level and 5,000 ft.

The sample table in the proposed AC is basic; it includes only ranges for cruise and stall speeds and related information. As noted above, it is not a detailed description of the flight characteristics of a specific aircraft.

Interview about PC-Based Simulation

The friendly folks at the Hangar 49 podcast (produced in the Pacific Northwest) have posted their latest installment (mp3), which includes an interview with me about using PC-based flight simulations to complement flight training.

This is one of several interviews and webinars that I’ve done recently on this topic. You can watch the webinar, hosted by EAA, here. Another interview is available as a podcast at PilotSafetyRadio.

For more information about my two books about PC-based flight simulation, visit my website.

Flight Models and FAA Approval of Training Devices

Many pilots and flight instructors obsess about the fidelity of the “flight models” (the more formal term is “flight dynamics”) of PC-based simulations and flight training devices (FTDs). They equate detailed, accurate flight dynamics for specific aircraft with FAA approval, but the FAA actually imposes few specific requirements on the flight modeling for ATDs and BATDs [see AC 61-136 – FAA Approval of Aviation Training Devices and Their Use for Training and Experience].

ATDs and BATDs often use Microsoft Flight Simulator or X-Plane as the core of the software component of the training device. [The requirements for more sophisticated FTDs (which are approved at several levels) are spelled out in detail in Appendix B to Part 60—Qualification Performance Standards for Airplane Flight Training Devices of the FARs.]

For example, Appendix B of AC 61-136 includes detailed requirements about the controls and displays required for FAA approval, but about flight dynamics it says only:

Flight dynamics of the ATD should be comparable to the way the represented training aircraft performs and handles. However, there is no requirement for an ATD to have control loading to exactly replicate any particular aircraft.. . .

Aircraft performance parameters (such as maximum speed, cruise speed, stall speed, maximum climb rate, and hovering/sideward/forward/rearward flight) should be comparable to the aircraft being represented.

Aircraft vertical lift component must change as a function of bank comparable to the way the aircraft being represented performs and handles.

Changes in flap setting, slat setting, gear position, collective control, or cyclic control must be accompanied by changes in flight dynamics comparable to the way the M/M of aircraft represented performs and handles.

The presence and intensity of wind and turbulence must be reflected in the handling and performance qualities of the simulated aircraft and should be comparable to the way the aircraft represented performs and handles.

In fact, with regard to FTDs and all ATDs and BATDs, the FAA is most concerned with the controls, instruments, and switches in the cockpit and the visual displays than it is with the detailed handling qualities of the simulation–provided the virtual aircraft, in general, behaves like a single-engine or multiengine airplane.

Now, this isn’t to suggest that flight dynamics aren’t important, or that flight simulations shouldn’t strive for high fidelity. But implicit in the FAA approval standards is the idea that FTDs, ATDs, and BATDs can play many roles in aviation training without having to replicate a specific make, model, or type of aircraft.

That’s a central theme of my two books about using PC-based simulations in flight training, Scenario-Based Training with X-Plane and Microsoft Flight Simulator: Using PC-Based Flight Simulations based on FAA and Industry Training Standards (published January 2012) and Microsoft Flight Simulator as a Training Aid (published in January 2007).

If you’re considering using a simulation to complement your training, focus on what PC-based simulations, including BATD and ATD, do best–help you learn and master important skills and procedures–how to think like a pilot. Don’t dismiss a simulation just because it doesn’t exactly reproduce the aircraft you fly.