A Better Approach to Teaching and Using Technology in the Cockpit

Here’s a video version of a presentation that gave at the Northwest Aviation Conference in February 2022. I have long argued that flight instructors and pilots need to adapt how we teach and use technology such as electronic flight displays, GPS navigation, and electronic flight bags (EFBs) to reflect how pilots fly in the real world.

We certainly don’t want to create so-called children of the magenta line, pilots who are helpless without GPS guidance and autopilots. But given the reality that most of us fly today with at least some advanced technology, we should do a better job of preparing pilots to use the tools available to them. And we should remember that the “good old days” weren’t really so good, at least when we consider the frequency of accidents related to weather, loss of situational awareness, running out of fuel, and so forth.

This 25-minute presentation also offers suggestions that can help flight instructors use technology, such as autopilots, flight directors, and aviation training devices, to introduce basic skills to new students–and to help pilots who have upgraded their panels and avionics adapt their old flying habits.

New AC for ATDs

FAA has published AC 61-136B, FAA Approval of Aviation Training Devices and Their Use for Training and Experience, an update to the previous edition of the advisory circular.

I wrote about the earlier update to this AC in 2013, here. See also New IFR Currency Rules and Other Changes to 14 CFR Part 61.


The Foundation from one-G, an AATD based on the C172, is among the newest FAA-approved ATDs.

This AC provides information and guidance for Aviation Training Device (ATD) manufacturers seeking Federal Aviation Administration (FAA) approval of a basic aviation training device (BATD) or advanced aviation training device (AATD)…

This AC also provides information and guidance for those persons who intend to use a BATD or AATD for activities involving pilot training and experience, other than for practical tests, aircraft-type-specific training, or an aircraft type rating.

For most pilots, flight schools, and flight instructors, the most relevant section is Appendix D, Training Content and Logging Provisions, which includes a syllabus for integrated training using ATDs.

That appendix also clarifies how pilots and CFI should log time when using ATDs.

Logging Training Time and Experience. Authorized instructors utilizing an FAA-approved ATD for airmen training, pilot time, and experience requirements are required to log the time as dual instruction and as basic aviation training device (BATD) or advanced aviation training device (AATD) time appropriately. Any columns that reference flight time should remain blank when logging ATD time. ATD time can only be logged as Instruction Received (Dual), Instrument Time, or Total Time as reflected on the pilot time section of FAA Form 8710-1, Airman Certificate and/or Rating Application. Simulated instrument time can be logged in an ATD, but only during the time when the visual component of the training session is configured for instrument meteorological conditions (IMC) and the pilot is maintaining control solely by reference to the flight instruments. Logging time in this fashion will allow a pilot to credit this time towards the aeronautical experience and instrument experience requirements as specified in part 61 or part 141. It is required under § 61.51(b)(1)(iv) that the type and identification of the ATD be included when logging pilot time as described in the letter of authorization (LOA)….

Note: There are no restrictions on the amount of training accomplished and logged in training devices. However, the regulatory limitations on maximum credit allowed for the minimum pilot certification requirements are specified by parts 61 and 141 and in the LOA. No approvals or authorizations are provided for aircraft type ratings using ATDs.

Comments on Proposed Rule Changes

The FAA recently proposed several significant changes to regulations that expand the use of aviation training devices, training for the commercial pilot and certified flight instructor certificates, maintaining instrument currency, and other issues of interest to many general aviation pilots and flight instructor.

Below are my comments on some portions of the proposed rules, which I have submitted to the docket.

Use of TAA for Commercial and Flight Instructor Certificates

For all the reasons outlined in the proposal, I support the option to substitute a TAA (as redefined in the proposed rule) for the training and practical tests required for the commercial pilot and certified flight instructor certificates with single-engine-land ratings.

One commenter objects that pilots won’t gain experience “with higher performing engine[s], retractable gear, constant speed propeller, etc.” But most flight schools offering training for those certificates rely on aircraft such as the C172RG or Piper Arrow, which have at most 200-hp engines. These are hardly high-performance aircraft, either as defined by FAA regulation or by their speed, sophisticated avionics and equipment, or handling characteristics. Pilots who want to fly aircraft with retractable landing gear, constant-speed propellers, turbocharged engines, and other characteristics typically associated with high-performance aircraft will still, as a practical matter, require checkouts and operating experience mandated by regulations (e.g., the endorsement required to act as PIC in an aircraft with an engine rated at more than 200 HP), insurance, flight school policies, commercial operator specifications, and common sense (a refreshing concept endorsed in the recent proposal to revise 14 CFR Part 23 aircraft certification rules—viz., “The part 23 regulations should not need to prescribe basic physical principles, sound engineering judgment, and common sense.”).

The checkout required for aircraft like the C172RG or Piper Arrow is hardly a leap from a Skyhawk or Warrior. Instead, it’s a small step, and learning to operate and confirm the configuration of, for example, retractable landing gear, is only a small part of a complete commercial pilot or CFI training syllabus, and that basic training hardly prepares a pilot to fly a truly high-performance “complex” aircraft such as Cirrus SR22 (which has fixed landing gear) or a Beechcraft Bonanza.

Similar examples: (1) Pilots with MEL ratings on their pilot certificates legally can fly any multiengine aircraft that doesn’t require a type rating. But in the real world, they must receive training and gain operating experience in specific makes and models to obtain insurance, fly rental aircraft, or act as PIC in a commercial operation; (2) Regulations require only a single logbook endorsement to fly tailwheel aircraft. But the handling characteristics of tailwheel aircraft vary widely (even among those that don’t have big engines, constant-speed propellers, etc.). Again, insurance, rental policies, and common sense oblige pilots who fly tailwheel aircraft to receive training and gain operating experience in specific makes and models.

Maintaining IFR Currency with ATDs

I applaud the proposed changes that would allow instrument-rated pilots to maintain currency with in any combination of aircraft, FFS, FTD, or ATD without requiring an instructor to be present. The current regulations are a deterrent to pilots who use ATDs. They must parse the rules and carefully review their logbooks to ensure that they have met the arcane requirements for various tasks, time limits, and calendar constraints. Instead of using training devices, today most pilots hop in their aircraft with a safety pilot (not necessarily an instructor) and repeatedly fly the same familiar procedures in their local areas, missing opportunities to practice the important skills of briefing and setting up a variety of DPs, arrivals, and approaches that include such elements as DME arcs and course reversals. They also typically don’t gain experience handling realistic equipment failures, challenging weather, and so forth. As the FAA notes, the proposed changes would encourage pilots to maintain their instrument skills.

My experience as an instructor strongly suggests that it’s the mental, puzzle-solving side of IFR flying that deteriorates most quickly over time. Use of training devices is the most effective, efficient way to hone and maintain those mental skills.

Pilots who want to use a training device at a flight school will still require at least an initial checkout on the equipment to ensure that they can use it effectively. Those checkouts are an opportunity for pilots to work with instructors to deficiencies in both their understanding of IFR flying and specific piloting skills, and those encounters will help instructors to develop relationships with pilots who otherwise might not be receiving training.

Pilots are upgrading aircraft to include sophisticated avionics (even if the panel doesn’t meet the revised definition of a TAA). They are increasingly using tablets and other devices as substitutes for charts and to provide information about weather, traffic, and other details. Allowing pilots wider, creditable use of training devices that include, for example, GPS navigators, will help them develop and maintain the essential skills described in such publications as the Advanced Avionics Handbook and Instrument Procedures Handbook. Using training devices also gives pilots opportunities to practice using new technology and develop good operating procedures.

Definition of ATD

The notice includes a new definition of aviation training device (ATD):

The FAA is now proposing to define ATD in § 61.1 as a training device, other than a full flight simulator or flight training device, that has been evaluated, qualified, and approved by the Administrator.

It’s not clear, however, if the proposed changes would eliminate the basic aviation training device (BATD) and advanced aviation training device (AATD) categories as described in AC 61-136 FAA Approval of Basic Aviation Training Devices (BATD) and Advanced Aviation Training Devices (AATD). The language in various sections of the proposed rules is ambiguous and should be clarified, and AC 61-136 and related policy guidance should be revised to ensure that both FAA and airmen throughout the system have a clear understanding of distinctions among the devices. I understand that for the purposes of FAA approval the existing categories may remain desirable—especially for manufacturers. But FAA inspectors, pilots, and instructors should not be confused about the practical application of ATDs for training and maintaining currency.

Simulations, Flight Simulators, FTDs, and ATDs

Pilots and flight instructors often debate the value of using flight simulation to complement flight training. We casually use the phrase flight simulator when referring to non-flying gizmos that re-create, at varying levels of fidelity, the experience of being in an airplane cockpit. Simulator is a handy shortcut, but can lead to confusion about how such devices can be used during training and to maintain currency. Equally important, misunderstanding the differences among simulations, flight simulators, flight training devices (FTD) and aviation training devices (ATD) often means these tools aren’t used most appropriately or effectively.

On June 27, 2018, FAA published several important changes to 14 CFR Part 61 that expand the use of ATD, FTD, and FFS to maintain IFR currency. You can read about those changes at BruceAir here.

See also the latest version of  AC 61-136B, FAA Approval of Aviation Training Devices and Their Use for Training and Experience. More information here: New AC for ATDs.

The following discussion is based on Chapter 3, “Using PC-Based Simulations Effectively” in my last book, Scenario-Based Training with X-Plane and Microsoft Flight Simulator: Using PC-Based Flight Simulations based on FAA and Industry Training Standards (ISBN: 978-1-1181-0502-3).

For additional information about how the FAA classifies flight simulators and flight training devices, see the November/December 2017 issue of FAA Safety Briefing. That entire edition is devoted to flight simulation.

Simulators, FTDs, and Simulations

Technological leaps have blurred the lines that just a few years ago distinguished the capabilities of full-motion simulators from the features of the home cockpits that hobbyists set up in their basements and garages. Recent changes to the definitions of and the regulations governing the use of FAA-approved simulators have added to the aviation community’s confusion about these tools.

Key Categories

The FAA recognizes four general categories of flight simulation systems:

  • Full Flight Simulator (FFS)
  • Flight Training Device (FTD)
  • Advanced Aviation Training Device (AATD)
  • Basic Aviation Training Device (BATD)

The first two categories are described in 14 CFR 60: Flight Simulation Training Device Initial and Continuing Qualification and Use. ATDs are discussed in AC 61-136.

Each category of simulator and training device includes levels that describe the increasing sophistication, capability, and fidelity of the systems.

Full Flight Simulators

The term Full Flight Simulator (FFS) replaces airplane simulator, previously defined in AC 120-45A. According to the current FAA regulations, an FFS is a

…replica of a specific type, make, model, or series aircraft. It includes the equipment and computer programs necessary to represent aircraft operations in ground and flight conditions, a visual system providing an out-of-the-flight deck view, a system that provides cues at least equivalent to those of a three-degree-of-freedom motion system, and has the full range of capabilities of the systems installed in the device….(14 CFR 60, Appendix F)

The core of that definition remains “replica of a specific type, make, model, or series aircraft.” In other words, a flight simulator duplicates the performance and flying characteristics of a particular airplane, and it must re-create an airplane’s cockpit with great fidelity, including exact reproductions of the real aircraft’s physical controls, instrumentation, and switches. It must reproduce the aircraft’s flight characteristics with high fidelity. The photo below shows a typical modern full flight simulator made by CAE.


Flight Training Devices (FTDs)

The same regulations update the definition of a Flight Training Device (FTD) to:

…a replica of aircraft instruments, equipment, panels, and controls in an open flight deck area or an enclosed aircraft flight deck replica. It includes the equipment and computer programs necessary to represent aircraft (or set of aircraft) operations in ground and flight conditions having the full range of capabilities of the systems installed in the device…for a specific FTD qualification level. (14 CFR 60, Appendix F)

That description drops the requirement that an FTD must mimic a specific make or model of an aircraft. The degree to which a particular FTD must emulate an aircraft’s controls, instruments, and switches depends on the device’s certification level, but in general, an FTD doesn’t have to duplicate every switch. The photo below shows an FTD manufactured by Precision Flight Controls.

105023 f0302

For example, a Level 4 FTD, the least sophisticated type:

…may have an open airplane-specific flight deck area, or an enclosed airplane-specific flight deck and at least one operating system. Air/ground logic is required (no aerodynamic programming required). All displays may be flat/LCD panel representations or actual representations of displays in the aircraft. All controls, switches, and knobs may be touch sensitive activation (not capable of manual manipulation of the flight controls) or may physically replicate the aircraft in control operation. (14 CFR 60, Appendix F)

Level 5 and 6 FTDs must replicate the cockpits and flight characteristics of aircraft with increasing precision.

Basic and Advanced Aviation Training Devices

In 1997, the FAA published AC 61-126, Qualification and Approval of Personal Computer-Based Aviation Training Devices, which, as the title implies, discussed the use of PC-based simulations. PCATDs, as the devices were known, included software like Microsoft Flight Simulator, hardware (usually one or more consoles that incorporated a flight yoke and other controls and switches), and a display (typically an off-the-shelf computer monitor). Because the technology was new, the FAA restricted the use of PCATDs to a few basic tasks required during primary and instrument flight training.

Technological advances and the aviation community’s experience with PCATDs led the FAA to update the definition and expand the use of PC-based simulations. AC 61-136 – FAA Approval of Aviation Training Devices and Their Use for Training and Experience, first issued in 2008, retired the PCATD category and described the PC-based training devices that the FAA now approves for use in aviation training.

The core requirements for BATDs and AATDs are more general than those specified for flight simulators and FTDs. For example, according to AC 61-136B, a BATD “Provides a training platform for at least the procedural aspects of flight relating to an integrated ground and flight instrument training curriculum.”

The photo below shows a typical ATD made by Precision Flight Controls.

105023 f0303

The more sophisticated AATD “Provides a training platform for both procedural and operational performance tasks related to ground and flight training towards private pilot, commercial pilot, and airline transport pilot certificates, a flight instructor certificate, and instrument rating.”

The hardware specifications for BATDs and ATTDs are similar. For example, a BATD “must provide certain physical controls and may provide some virtual controls,” described as follows:

(1) Physical flight and aircraft system controls should be recognizable as to their function and how they are to be manipulated solely from their appearance. Physical flight and aircraft system controls eliminate the use of interfaces such as a keyboard, mouse, or gaming joystick to control the represented aircraft model in simulated flight.

(2) For the purposes of this AC, virtual control is any input device to control aspects of the simulation (such as setting aircraft configuration, location, and weather) and to program, pause, or freeze the device. Virtual controls should be primarily for the instructor’s use…

(4) The physical arrangement, appearance, and operation of controls, instruments, and switches…should model at least one aircraft in the family of aircraft represented as closely as practicable. Manufacturers are expected to use their best efforts to recreate the appearance, arrangement, operation, and function of realistically placed physical switches and other required controls representative of a generic aircraft instrument panel. (FAA Advisory Circular AC 61-136)

The Deeper Distinction

It’s as easy to distinguish superficially between an FFS and a BATD as it is to see the differences between a single-engine trainer and an airliner. But there’s more than technology behind the differences between types of simulation devices. They’re intended for fundamentally different uses.

Simply put, an FFS is a substitute for a specific aircraft, and in many circumstances, pilots using an FFS can receive all the training required to operate the simulated airplane and earn a type rating for that aircraft without ever leaving the ground. In fact, airline pilots who have completed training for a new type in an FFS, and who may never have been in the cockpit of the real aircraft that the simulator emulates, often make their first flights in that airplane in regular revenue service with passengers on board.

To achieve the level of fidelity necessary to meet that goal, the specifications for an FFS are extensive, detailed, and stringent. As noted earlier, they require that a simulator duplicate a specific cockpit. The FFS must also have a wide-view, high-resolution display; “flying” characteristics that closely mimic those of the real airplane throughout its normal flight envelope; a sophisticated sound system; and motion that accurately re-creates the feel of flying.

Level 4, 5, and 6, FTDs are by definition less comprehensive representations of specific aircraft or broad types of airplanes, and as such, the requirements they must meet are less stringent. They also can’t be used to complete all of the training pilots must receive. To earn type ratings or similar approvals to act as the pilot in command of an aircraft simulated by an FTD, pilots eventually must fly the real airplane—or train in an appropriate FFS.

A BATD or AATD, however, is not intended to be a replacement for a specific aircraft, or even a series of related aircraft—it’s not a simulator. In fact, as their full names imply, BATDs and AATDs are not even flight training devices.

Instead, BATDs and AATDs are Aviation Training Devices (ATDs) intended to complement aircraft—and ground-school classrooms—throughout a training program. The FAA explains the distinction this way:

Instructors have typically taught flight task procedural skills almost exclusively during in-flight training and aeronautical knowledge during ground training. However, based on the available data, the FAA has determined that instructors can successfully teach procedural understanding of certain flight tasks during ground and flight training using [BATDs and AATDs]….(FAA Advisory Circular AC 61-136)

In other words, ATD aren’t intended—primarily at least—to help pilots develop and hone stick-and-rudder skills. They’re essentially procedural and part-task trainers to help pilots understand and apply important concepts and to practice and master general procedures that apply to a variety of aircraft.


Finally a simulation, flight or otherwise, is just a representation—these days typically a virtual representation—of something. That something can be a physical object or a process.

The key to using PC-based simulations effectively, then, is understanding that like BATDs and AATDs, they are tools to help pilots grasp general principals and practice basic procedures through hands-on experience.

Where X-Plane and Microsoft Flight Simulator Fit In

You may have noticed the discussion of BATD and AATD hasn’t mentioned X-Plane or FSX. The reason is straightforward—neither product by itself meets the FAA standards for a “training device,” which by definition must include software and hardware, such as flight controls and cockpit switches.

Physical flight and aircraft system controls [of an ATD] should be recognizable as to their function and how they are to be manipulated solely from their appearance. Physical flight and aircraft system controls eliminate the use of interfaces such as a keyboard, mouse, or gaming joystick to control the represented aircraft model in simulated flight. (FAA Advisory Circular AC 61-136)

The only significant physical difference between X-Plane or FSX configured as described in Chapter 1, “What You Need to Use this Book,” and a BATD is the use of a “gaming” joystick for primary flight control and a mouse to operate the virtual switches and other controls depicted on the cockpit display. The FAA requirements for a BATD restrict the use of a mouse and keyboard as follows:

Except for setup and/or fault mode entry, neither the keyboard nor the mouse may be used to set or position any feature of the BATD in the represented aircraft for the maneuvers or flight training to be accomplished…The pilot must operate the additional equipment needed in order to accomplish a training procedure…in the same manner in which it would be operated in the represented aircraft. For example, [by using] landing gear, wing flaps, cowl flaps, carburetor heat control, and mixture, propeller, and throttle controls. (FAA Advisory Circular AC 61-136)

The latest flight yokes, throttle quadrants, and other accessories developed for hobbyists, however, meet the FAA requirement that they be “recognizable as to their function and how they are to be manipulated solely from their appearance.”  Many BATDs use such off-the-shelf cockpit controls.

Flight Dynamics

No issue generates more heated debated among users of PC-based simulations—including pilots and flight instructors—than the perceived realism of the “flight” characteristics (also known as the “flight models,” or, more formally, the “flight dynamics”) of different simulations.

Because BATDs and AATDs are aviation training devices, not flight simulators, the FAA lays out only general standards for the flight models that drive them. Note that throughout the following descriptions, there is no requirement that a flight model replicate the characteristics of a specific airplane:

(1) Flight dynamics of the ATD should be comparable to the way the represented training aircraft performs and handles. However, there is no requirement for an ATD to have control loading to exactly replicate any particular aircraft…

(2) Aircraft performance parameters (such as maximum speed, cruise speed, stall speed, maximum climb rate, hovering/sideward/forward/rearward flight) should be comparable to the aircraft or family of aircraft being represented.

(3) Aircraft vertical lift component must change as a function of bank, comparable to the way the aircraft or family of aircraft being represented performs and handles.

(4) Changes in flap setting, slat setting, gear position, collective control or cyclic control must be accompanied by changes in flight dynamics, comparable to the way the aircraft or family of aircraft represented performs and handles.

(5) The presence and intensity of wind and turbulence must be reflected in the handling and performance qualities of the simulated aircraft and should be comparable to the way the aircraft or family of aircraft represented performs and handles. (FAA Advisory Circular AC 61-136, Appendix 2)

Put in more familiar terms, the virtual airplane inside an ATD must bank left when you move the yoke to the left. The nose must pitch up when you pull back on the flight controls. Changing power should make the aircraft speed up or slow down (or affect its rate of climb or descent). The rates at which the airplane rolls, pitches, and yaws should be “comparable” to the way a given airplane or family of similar aircraft responds to a pilot’s actions.

For the purposes of this book, then, there’s no meaningful distinction between the “blade element theory” at the core of X-Plane and the classic “6-degree-of-freedom” model employed in FSX. (If you’re interested in the technical details of each approach, see the links to more information at this book’s website.) Both simulations, in fact, exceed the general requirements for the flight model at the heart of an ATD. The choice of which PC-based simulation to use depends largely on personal perception of how the virtual aircraft respond and on other considerations, as described in Chapter 5, “Choosing a PC-Based Simulation: X-Plane or FSX?”

Additional Information