Flying an Approach with only an iPad

You’re suddenly having a bad IFR day. As you approach your destination, Huron, SD, after a routine departure and a comfortable cruise in IMC, most of your panel abruptly goes dark. You still have basic flight instruments, including an electronic PFD and an HSI, which run on backup batteries. Your last communications with ATC included a clearance to an initial approach fix and “expect the ILS RWY 12 approach.” But your GPS navigator, which includes navigation receivers, is now kaput, along with your second nav/com. In other words, you have no moving map or course guidance in the panel–just attitude, airspeed, altitude, and heading. You can’t even see a GPS track indicator.

The good news is, you have an iPad with a built-in GPS (or a tablet connected to an external GPS source) running ForeFlight or a similar app. The EFB confirms that your blue “own ship” symbol is tracking toward HUMSO, an initial approach fix that marks the beginning of a feeder route that takes you to the final approach course.

Using just your track shown on the approach chart, and your basic instrument flying skills, can you fly the approach?

See my article on this topic at AOPA Flight Training magazine: When the Screens Go Dark.

I practice such scenarios periodically during recurrent training. In my A36 Bonanza, operating under VFR with a safety pilot, I switch the navigation screen on my GTN 750Xi to the traffic page, which provides no navigation information, and then I practice getting to an airport and flying an approach using only the iPad for guidance.

Of course, an iPad isn’t a “suitable RNAV system” as defined in the AIM and FAA advisory circulars, but in IMC under IFR, this scenario qualifies as an emergency, and you can bend the rules as necessary to arrive safely.

As you’ll see in this video, a challenge like this is also an excellent workout in an aviation training device. Galvin Flying, the flight school in Seattle where I instruct, has two ATDs made by one-G Simulations. They emulate C172s. You can connect ForeFlight to the Wi-Fi signals broadcast by each trainer, which send position, altitude, speed, and other information to your tablet. As far as ForeFlight is concerned, you’re flying.

Just as in the airplane, provided your EFB can receive GPS signals, you have a good 2-D navigation solution. If you can keep your blue airplane tracking along the lines on a geo-referenced approach chart, you’ll follow the intended path. What you don’t get, however, is any type of vertical guidance. It’s up to you to establish and maintain a steady descent that keeps you as close as possible to an ILS glideslope or a GPS glidepath for an approach to a DA, or to the profile for a non-precision approach to an MDA.

You may also want to practice using the synthetic vision feature, if your EFB app supports it. Although I prefer flying with the procedure chart visible, synthetic vision would be a terrific aid if you lose the basic flight instruments.

Flying an approach like this successfully requires mastery of fundamental instrument skills, what we used to call flying with only “needle, ball, and airspeed.” You must understand and be able to apply the control-performance method of instrument flying—establishing the appropriate attitude, setting power and configuration, monitoring your progress, and making constant, smooth adjustments as you proceed. In other words, it’s a good test that takes you back to drills like flying Pattern A and Pattern B that you practiced early in your IFR training.

Watch the video to see how accurately I flew two approaches in the ATD with just the airplane symbol on an approach chart for guidance.

A Scenic Approach to Boeing Field

I recently flew the A36 Bonanza from Boeing Field (KBFI) in Seattle to Grant County Airport (KMWH) at Moses Lake, WA and back, taking advantage of a break in the weather to cross the Cascade Mountains again before winter weather makes such trips increasingly rare.

The return to KBFI included a visual approach that passed over Seattle-Tacoma International Airport (KSEA) to a swooping descent over Puget Sound and through Elliott Bay to runway 14R.

I also captured videos of the flight to and from KMWH, which you can watch on my YouTube channel here and here.

Mixing RNAV and an ILS

If you fly an airplane with a suitable RNAV system (for most of us, that’s an IFR-approved GPS navigator in the panel), you’re accustomed to flying RNAV (GPS) approaches and other procedures, such as RNAV departures and arrivals. And since most RNAV navigators currently in use also support flying ILS and VOR procedures, you also probably still fly the occasional ILS or VOR approach, even if you prefer all-GPS procedures.

But as the shift to Performance-Based Navigation (PBN) continues, the FAA is publishing more approaches that include–and sometimes require–using both GPS-based RNAV systems and ground-based navaids.

For other examples, see An ILS that Requires GPS, and the ILS OR LOC RWY 21 at KSTE in WI.

Consider the ILS or LOC RWY 12 at Huron (KHON), a small town in South Dakota.

In many respects, this is a typical ILS. It offers a DA at 200 AGL and requires 1/2 sm visibility (the RNAV (GPS) approach to RWY 12 offers the same LPV minimums). It also has an old-school locator outer marker (LOM) at BEADY that serves as the final approach fix for the LOC-only version of the approach and as the anchor for the missed-approach holding pattern.

But read the note in the required equipment box.

In most light aircraft these days, you must also have an IFR-approved GPS to fly the feeder routes and to identify BEADY, because your panel probably doesn’t include DME or an ADF.

ATC could provide vectors to steer you from the enroute environment to the final approach course. But as I’ve noted elsewhere, if you filed IFR as an RNAV/PBN-capable aircraft, a controller can clear you direct to any initial approach or intermediate fix, even if you’re flying a conventional procedure like an ILS.

The enroute chart for the area around Huron shows why you might expect such a clearance. The closest VOR at Watertown (ATY) is nearly 40 nm away, and the airways that converge at KHON are all GPS-based T-routes. The VOR at HON has been decommissioned; only the DME component remains (for more information, see Stand-Alone DMEs on Charts).

A controller can avoid issuing a series of vectors and altitudes as you fly toward the airport and offer one simple instruction, “Cross HUMSO [or WEDEM] at or above 3000, cleared for the ILS RWY 12 approach.”

Your task is to brief the plan for changing from GPS guidance to fly the feeder route from either HUMSO or WEDEM to “green needles” to intercept and track the localizer as you turn inbound toward the airport. And decide, if necessary, how you’ll fly the missed approach.

So today, even if you’re flying to a GA airport far from the big city, you should be prepared to load and fly such hybrid procedures if, for training or practice, you want to fly an ILS, LOC, or VOR approach.

Video: Tips for IFR Flights

Fall weather finally arrived in Seattle, so I took advantage of IFR-and MVFR conditions to fly the Bonanza on a short hop from Boeing Field (KBFI) to Arlington (KAWO).

A glitch meant that I didn’t capture ATC or intercom audio on this flight, so instead this video describes some of the techniques and procedures that I use on a typical IFR flight. And I explain how I dealt with an unexpected curve during the approach at Arlington.

A flight from Boeing Field to Arlington in the Bonanza typically involves only about 20 minutes in the air. Under IFR, it’s important to manage the workload—updating the preflight briefing with the latest information, obtaining an IFR clearance, setting up the airplane and avionics, flying a departure procedure, and being ready to begin an approach as soon as you level off.

For example, before I even start the engine, I call the phone numbers for the ATIS or AWOS at my departure and destination and fill in the ForeFlight scratchpads. That way, I have the basic information and I can quickly confirm the current ATIS letter and update the one-minute weather when I contact ATC before takeoff and as I begin the approach that I want to fly, based on the wind and other details.

See the video for other tips, such as annotating charts and loading–but not activating–approaches.

I Survived a Downwind Turn

One of the most persistent misconceptions in aviation is that so-called downwind turns are dangerous. Proponents of this fallacy typically present the following basic argument:

Consider an airplane flying due north at, say, 100 KIAS into a 30 knot direct headwind. The airplane’s groundspeed is therefore 70 knots. If the airplane, still flying at an indicated airspeed of 100 knots, turns 180 degrees to a heading of due south, it needs to “gain” 60 knots to match its new groundspeed of 130 knots—that is, the sum of its airspeed and the wind velocity. A pilot who doesn’t take care to add power or push the nose down to help the airplane “gain energy” in the turn risks stalling and falling out the sky.

That argument may seem logical and consistent, but it doesn’t hold up when we actually do the experiment, as you can see in the video below.

I took advantage of an IFR training flight with a student in a C172 to capture the “downwind turn” phenomenon in action. We had flown an instrument approach and then climbed to 4000 ft to enter and fly the published hold at CARRO intersection, a fix located 24 nm southwest of the SEA VOR.

The track data shows that as we flew the outbound leg of the hold, we were cruising at about 100 KIAS almost directly into a wind of about 30 knots.

When we turned 180 degrees back inbound to CARRO, our airspeed remained essentially constant (the student was hand-flying the aircraft, which doesn’t have an autopilot).

Our groundspeed varied from about 80 knots outbound to some 120 knots on the inbound leg. But the pilot didn’t have to add power—or do anything else out of the ordinary—to keep the airplane flying. He just turned as if we were flying on a dead calm day. Because from the airplane’s perspective in the air, the 30-knot wind aloft didn’t exist.

And without looking outside at the ground or checking the groundspeed and wind displays on the PFD, we wouldn’t have sensed the wind, either.

We gained groundspeed thanks to the push from the wind.

As many experts have tried patiently to point out, the key to this situation is knowing that velocity and energy are measured with respect to specific frames of reference.

For example, the kinetic energy of an airplane that concerns us during takeoff, landing, and cruising to our destination—or when crashing into terrain—is a function of groundspeed, which is measured with respect to the earth.

If you are flying at, say, 60 KIAS in zero wind, when your wheels touch the runway you have the kinetic energy associated with 60 knots groundspeed and the aircraft’s mass.

Touch down at, say 60 KIAS into a 20 knot headwind, however, and you have the kinetic energy associated with a velocity of 40 knots, with respect to the earth.

But in both of those situations, your speed through the air remains 60 knots.

As the following excerpt from a column in AOPA Pilot by Catherine Cavagnaro succinctly explains, changes in the aircraft’s kinetic energy with respect to the ground are powered by the wind, and the change in groundspeed applies regardless of the aircraft’s mass or power, because the aircraft is always moving within and along with the air mass in which it is flying, just like a leaf, or a branch, or a boat floating downstream in a river.

A baseball that hits a wall gains no energy in the process. But when it hits a fast-swinging bat, it gains a significant amount before it soars toward the outfield. In the flight scenario, the airplane plays the role of the ball and the wind is the swinging bat. Without wind there is no change in energy from the departure leg to the downwind leg. But the 20-knot wind supplies the extra energy that increases the groundspeed of the airplane. It’s the same energy increase we enjoy as we travel cross-country with a strong tailwind. To avoid a stall in any turn, take the same precautions one does in an ordinary no-wind situation. (Proficiency: Relax and Go With The Flow, AOPA Pilot, August 1, 2019, by Catherine Cavagnaro)

In the air, your energy with respect to the airmass remains the same, regardless of which direction you fly and the presence of wind, if any. You can maneuver at will, and at a given airspeed, the airplane’s kinetic energy with respect to the airmass, regardless of the wind direction, doesn’t change. And when considering stall speeds, your airspeed (actually, angle of attack) measured with respect to the airmass is all that matters—because that velocity is what the wing experiences.

Of course, wind shear—an abrupt change in wind direction and/or speed—and vertical gusts–does affect an airplane. Those phenomena cause variations in angle of attack and G loads. But the myth of the downwind turn isn’t about wind shear. It’s an error caused by conflating frames of reference.

For more information about this topic, see the following articles and other videos:

And for a wonderful presentation about frames of reference and the fundamental principle of relatively (not limited to Einstein), see: Relativity Crash Course by Ramamurti Shankar, a professor of physics at Yale University.

Another Cross-Country in the A36

In May 2022 I flew the Beechcraft A36 from Seattle (KBFI) to New Hampshire (KASH) again for for IFR Mastery sessions at Pilot Workshops. The round trip of 4956 nm required 35.1 hours of Hobbs time and included a few days waiting out weather in Wisconsin, both eastbound and westbound.

To see videos from the trip, visit the Coast-to-Coast May 2022 playlist at my YouTube channel, BruceAirFlying. The video below is from a low-level flight along the Chicago skyline as I flew from Oshkosh, WI to Valpariso, IN.

Yoke Mount for iPad Mini

When I fly the A36 Bonanza, I mount my iPad Mini on the yoke using a RAM X-Grip with the large strap hose clamp and ball and a short RAM arm to connect the clamp to the X-Grip.

This arrangement works with 1984 and later Beechcraft Bonanzas and Barons, which use conventional yokes, not the big crossbar or throw-over yokes installed in earlier models. The tube that connects the Beechcraft yokes to the mechanisms behind the panel has a larger diameter than the tube used in other aircraft, such as Cessnas, so the large strap hose clamp is necessary to secure the mount.

The X-Grip holds an iPad securely while allowing air to circulate around the tablet, reducing the likelihood that it will overheat in flight. The X-Grip works even when an iPad is in a low-profile case. But it might not hold a tablet that is in a heavier, bulkier case.

A Gusty Crosswind Landing at KBFD

I have been flying the A36 Bonanza on another coast-to-coast trek to work with the crew at Pilot Workshops. On such long xc flights, you often must deal with challenging conditions, and such was the case when I landed at Bradford, PA (KBFD) for fuel (video below). I had been flying directly into strong headwinds the entire day (unusual when traveling eastbound) as I tracked just north of a strong low-pressure system.

The gusty, shifting winds at KBFD were generally 30-40 degrees off any of the available runways, so with the help of the information in ForeFlight, I chose runway 14 and wrestled my way to the ground.

The wide, sturdy landing gear of the Bonanza handles crosswinds well (the max demonstrated xwind component is 17 knots).

Flying the Blake Arrival at Boeing Field

Ride along as I return to Boeing Field (KBFI) after a quick stop for fuel at the Shelton-Sanderson airport (KSHN), southwest of Seattle.

I set up for the Blake Arrival, a VFR procedure that begins over Blake Island, which lies about 8 miles west of Boeing Field.

The VFR departure and arrival routes for Boeing Field are described on the reverse side of the Seattle terminal area chart, the so-called VFR Flyway Planning Chart.

I have created more detailed descriptions of each departure and arrival route, available as a PDF in my Aviation Documents folder at OneDrive.

The Blake Island Arrival is a “south arrival” for traffic inbound from the west. It’s used when Runways 14L and 14R are active. It begins over Blake Island at 2000-2500 ft to remain below the Class B shelf in the area. You then fly direct toward Lincoln Park, just north of the Fauntleroy Ferry dock, descending to cross the shoreline at 1500 ft, then continuing down to 1000 ft, taking care to remain below and clear of the overlying Class B airspace.

Boeing Tower usually directs you to fly a right base leg for runway 14R, but sometimes, to sequence you with other traffic, ATC needs to put you on a right downwind.

Or, as happened on this day, changes your runway assignment to 14L.

A Better Approach to Teaching and Using Technology in the Cockpit

Here’s a video version of a presentation that gave at the Northwest Aviation Conference in February 2022. I have long argued that flight instructors and pilots need to adapt how we teach and use technology such as electronic flight displays, GPS navigation, and electronic flight bags (EFBs) to reflect how pilots fly in the real world.

We certainly don’t want to create so-called children of the magenta line, pilots who are helpless without GPS guidance and autopilots. But given the reality that most of us fly today with at least some advanced technology, we should do a better job of preparing pilots to use the tools available to them. And we should remember that the “good old days” weren’t really so good, at least when we consider the frequency of accidents related to weather, loss of situational awareness, running out of fuel, and so forth.

This 25-minute presentation also offers suggestions that can help flight instructors use technology, such as autopilots, flight directors, and aviation training devices, to introduce basic skills to new students–and to help pilots who have upgraded their panels and avionics adapt their old flying habits.