Another Update on VOR Decommissioning

At the October 26-27, 2016 meeting of the Aeronautical Charting Forum, FAA provided an update on its plans to decommission VORs as the aviation world transitions to performance based navigation (PBN) predicated on GPS.

The briefing on the topic included proposed new language for the AIM (PDF), scheduled for publication in 2017, to describe the minimum operational network (MON) of VORs that will remain in place as about one-third of the existing VORs are gradually shut down.

You can learn more about the plans to reduce the number of VORs at this blog, here.

The new text (still subject to final revision) will appear in AIM 1-1-3.VHF Omni-directional Range (VOR):

f. The VOR Minimum Operating Network (MON). As flight procedures and route structure based on VORs are gradually being replaced with Performance Based Navigation (PBN) procedures, the FAA is removing selected VORs from service. PBN procedures are primarily enabled by GPS and its augmentation systems, collectively referred to as Global Navigation Satellite System (GNSS). Aircraft that carry DME/DME equipment can also use RNAV which provides a backup to continue flying PBN during a GNSS disruption. For those aircraft that do not carry DME/DME. the FAA is retaining a limited network of VORs, called the VOR Minimum Operating Network (MON) to provide a basic conventional navigation service for operators to use if GNSS becomes unavailable. During a GNSS disruption, the MON will enable aircraft to navigate through the affected area or to a safe landing at a MON airport without reliance on GNSS. Navigation using the MON will not be as efficient as the new PBN route structure, but use of the MON will provide nearly continuous VOR signal coverage at 5,000 feet AGL across the NAS outside of the Western US Mountainous Area (WUSMA). (There is no plan to change the NAVAID and route structure in the WUSMA).

The VOR MON has been retained principally for IFR aircraft that are not equipped with
DME/DME avionics. However, VFR aircraft may use the MON as desired. Aircraft equipped with DME/DME navigation systems would, in most cases, use DME/DME to continue flight using RNAV to their destination. However, these aircraft may, of course, use the MON.

1. Distance to a MON airport. Within the contiguous United States (CONUS), the VOR MON is designed to ensure that an airport that has an instrument approach that is not dependent on GPS, ADF, DME or radar is within 100 nautical miles of any location. These airports are referred to as “MON airports” and will have an ILS approach or a VOR approach if an ILS is not available. VORs to support these approaches will be retained in the VOR MON. MON airports are charted on low-altitude enroute charts and are contained in the Chart Supplement and other appropriate publications.

It is important to note that any suitable airport can be used to land in the event of a VOR outage. For example, an airport with a DME-recquired ILS approach may be available and could be used by aircraft that are equipped with DME. The intent of the MON airport is to provide an approach that can be used by aircraft without ADF or DME when radar may not be available.

2. Navigating to an airport. The VOR MON will retain sufficient VORs and increase VOR service volume to ensure that pilots will have nearly continuous signal reception of a VOR when flying at 5,000 feet AGL. A key concept of the MON is to ensure that an aircraft will always be within 100 NM of airport with an instrument approach that is not dependent on GPS. (See 1-1-8.) If the pilot encounters a GPS outage, the pilot will be able to proceed via VOR-to-VOR navigation at 5,000 feet AGL through the GPS outage area or to a safe landing at a MON airport or another suitable airport, as appropriate. Nearly all VORs inside of the US Western Mountainous Area (WUSMA) and outside the CONUS are being retained. In these areas, pilots may use the existing (i.e., Victor and Jet) route structure and VORs to proceed through a CPS outage or to a landing.

3. Using the VOR MON. In the case of a planned GPS outage (e.g., contained in a published NOTAM), pilots may plan to fly through the outage using the MON as appropriate and as cleared by ATC. Similarly, aircraft not equipped with GPS may plan to fly and land using the MON, as appropriate and as cleared by ATC. Note that, in many cases, flying using the MON may involve a more circuitous route than flying GPS-enabled RNAV.

In the case of an unscheduled GPS outage, pilots and ATC will need to coordinate the best outcome for all aircraft. It is possible that a GPS outage could be disruptive, causing high workload and demand for ATC service. Generally, the VOR MON concept will enable pilots to navigate through the GPS outage or land at a MON airport or at another airport that may have an appropriate approach or may be in visual conditions.

The VOR MON is a reversionary service provided by the FAA for use by aircraft that are unable to continue RNAV during a GPS disruption. The FAA has not mandated that preflight or inflight planning include provisions for GPS- or WAAS-equipped aircraft to carry sufficient fuel to proceed to a MON airport in case of an unforeseen GPS outage. Specifically, flying to a MON airport as a filed alternate will not be explicitly required. Of course, consideration for the possibility of a GPS outage is prudent during flight planning as is maintaining proficiency with VOR navigation.

Also, in case of a GPS outage, pilots may coordinate with ATC and elect to continue though the outage or land. The VOR MON is designed to ensure that an aircraft is within 100 nautical miles of an airport, but pilots may decide to proceed to any appropriate airport where a safe landing can be made. WAAS users flying under Part 91 are not required to carry VOR avionics. These users do not have the ability or requirement to use the VOR MON. Prudent flight planning by these WAAS-only aircraft should consider the possibility of a GPS outage.

The FAA recognizes that non-GPS-based approaches will be reduced as VORs are eliminated and that most airports with an instrument approach may only have GPS- or WAAS-based approaches. Pilots flying GPS or WAAS-eguipped aircraft that also have VOR/ILS avionics should be diligent to maintain proficiency in VOR and ILS approaches in the event of a GPS outage.

New Edition of Airplane Flying Handbook

FAA has published a new edition of the Airplane Flying Handbook (FAA-H-8083-3B), the handbook that complements the Pilot’s Handbook of Aeronautical Knowledge and the Airman Certification Standards (and Practical Test Standards).

airplaneflyinghandbook-cover

The preface notes that:

The Airplane Flying Handbook provides basic knowledge that is essential for pilots. This handbook introduces basic pilot skills and knowledge that are essential for piloting airplanes. It provides information on transition to other airplanes and the operation of various airplane systems…This handbook is developed to assist student pilots learning to fly airplanes. It is also beneficial to pilots who wish to improve their flying proficiency and aeronautical knowledge, those pilots preparing for additional certificates or ratings, and flight instructors engaged in the instruction of both student certificated pilots. It introduces the future pilot to the realm of flight and provides information and guidance in the performance of procedures and maneuvers required for pilot certification.

 

ForeFlight Plugin for FSX, Prepar3D

Flight1 Aviation Technologies, a major add-on developer for the Microsoft Flight Simulator series, is offering a free plugin for FSX and Prepar3D. Details and download information here.

Our ForeFlight Plug-in sends GPS, AHRS, and Traffic data from Lockheed Martin® Prepar3D™ or Microsoft® Flight Simulator X to ForeFlight on your iPad or iPhone.

ForeFlight uses that data just as it would use data coming from a real GPS or ADS-B device. You can use ForeFlight with the simulator just like you would in an airplane, including the GPS, ADS-B Traffic, and Attitude Indicator features.

According to Flight1:

Once the connection is made, you’ll be able to:

  • Practice using ForeFlight while you’re aviating, navigating, and communicating within the simulated world.
  • Master using ForeFlight during VFR and IFR flights between any airports anywhere in the world, in any season, in any weather conditions, at any time of day or night.
  • Learn to use ForeFlight features you might never have the opportunity to explore during a real flight in a real airplane.
  • Build proficiency flying unfamiliar routes and procedures by “pre-flying” them using the flight simulation and ForeFlight.
  • Practice using ForeFlight to perform route modifications and other potentially distracting tasks.
  • Train using scenarios you could otherwise only complete in a real airplane (or via “chair flying” using your imagination).

ATC Telephone Numbers for IFR Clearances

The FAA has announced that it will publish telephone numbers for some ATC facilities that provide IFR clearances and cancellations of IFR flight plans via the phone in the Chart Supplement (formerly known as the A/FD). FAA planned to begin implementation of the change on October 1, 2016 and complete the process by June 30, 2017.

The basic information was provided in a recommendation document (ACF-CG RD 16-020309) at the Aeronautical Charting Forum, which reads in part:

Subject: Publication of approach control phone numbers for purposes of Clearance
Delivery and/or IFR flight plan cancellation.

Background/Discussion: In accordance with the Administrator’s NAS Efficient Streamlined Services Initiative Air Traffic, Flight Service, and NATCA have agreed that air traffic facilities currently providing clearances to pilots via telephone (informally) will have their numbers published in the appropriate Chart Supplement, US. These same facilities will have the option to have a separate phone line installed for IFR flight plan cancellations, which will also be published. The attached Policy Decision Memorandum identifies the affected 32 Air Traffic facilities and reflects approval by VP System Operations, VP Air Traffic Services, and VP Technical Operations. Also attached are the Scoping Document Workgroup Agreement, Safety Risk Management Document, and Implementation Plan.

Recommendations: Publish the approach control phone numbers for Clearance Delivery and/or IFR flight plan cancellation in the Chart Supplement US, for example:

For CLNC DEL CTC BOSTON APCH (603) 594-5551

And, when available, for those facilities with the IFR cancellation line

To CANCEL IFR CTC BOSTON APCH (603) 594-5552

The official FAA memoranda that describe the details are attached to the recommendation documented linked above.

The list of TRACONs and towers (subject to revision) that will issue clearances directly to pilots via telephone includes:

  1. A90 -Boston
  2. C90 – Chicago
  3. Dl O -Dallas-Fort Worth
  4. D21 – Detroit
  5. F 11 – Central Florida
  6. 190 – Houston
  7. L30 – Las Vegas
  8. M03 – Memphis
  9. N90 -New York
  10. NCT -Northem California
  11. P80 – Portland
  12. R90 – Omaha
  13. S46 – Seattle
  14. S56 – Salt Lake
  15. T75 – Louis
  16. U90 -Tucson
  17. Y90 – Yankee
  18. ABE – Allentown, PA
  19. AUS -Austin, TX
  20. AVP – Scranton, PA
  21. ENA -Nashville, TN
  22. CLT – Charlotte,NC
  23. CRP – Corpus Christie, TX
  24. DAB -Daytona, FL
  25. IND – Indianapolis, IN
  26. MCI -Kansas City, MO
  27. MDT -Harrisburg, PA
  28. MSY -New Orleans, LA
  29. ORF -Norfolk, VA
  30. PHL – Philadelphia, PA
  31. SAT – San Antonia, TX
  32. PCT – Potomac, VA

New Edition of AC 00-6 Aviation Weather

FAA has published a new edition of AC 00-6 – Aviation Weather (PDF), the 1975 handbook that explains weather theory for pilots.

New scientific capabilities now necessitate an update to this AC. In 1975, aviation users were not directly touched by radar and satellite weather. In 2016, much of what airmen understand about the current atmosphere comes from these important data sources. This AC is intended to provide basic weather information that all airmen must know. This document is intended to be used as a resource for pilot and dispatcher training programs.

The new edition of the companion handbook, AC 00-45 Aviation Weather Services, which explains aviation weather reports and forecasts and the briefings available to pilots, is also available at the FAA website.

Simulated Wake-Turbulence Encounter

I do the exercise below with my stall/spin/upset students to simulate the disorienting effect of a wake-turbulence encounter. We perform 1-1/2 aileron rolls to inverted and then push and roll to recover to normal upright flight. The exercise is confusing at first, and the nose always drops well below the horizon during the “upset.” It’s a great way to help pilots understand what could happen if they were caught in a wintip vortex.

Wake turbulence caused by wingtip vortices is major hazard to small aircraft.

WakeTurbulence

The wingtip vortices are a by-product of lift. You can find detailed information about wake turbulence in FAA Advisory Circular AC 90-23 and in the Aeronautical Information Manual (Chapter 7, Safety of Flight; Section 3, Wake Turbulence).

 

 

 

FAA Releases List of VORs to be Shut Down

FAA has published a list of 308 VORs that it plans to shut down in phases by 2025. The notice in the Federal Register appeared on July 26, 2016. The notice includes a list of VORs that the FAA wants to decommission.

This document provides the discontinuance selection criteria and candidate list of VOR Navigational Aids (NAVAIDs) targeted for discontinuance as part of the VOR MON Implementation Program and United States (U.S.) National Airspace System (NAS) Efficient Streamline Services Initiative. Additionally, this policy addresses the regulatory processes the FAA plans to follow to discontinue VORs.

For background on the FAA’s plans, see Latest Info on VOR Shutdowns here at BruceAir. Note that under this plan, only about one-third of the existing network of VORs will be decommissioned.

According to the FAA notice:

The following criteria were used by the FAA to determine which VORs would be retained as a part of the MON:

— Retain VORs to perform Instrument Landing System (ILS), Localizer (LOC), or VOR approaches supporting MON airports at suitable destinations within 100 NM of any location within the CONUS. Selected approaches would not require Automatic Direction Finder (ADF), Distance Measuring Equipment (DME), Radar, or GPS.Show citation box

— Retain VORs to support international oceanic arrival routes.

— Retain VORs to provide coverage at and above 5,000 ft AGL.

— Retain most VORs in the Western U.S. Mountainous Area (WUSMA), specifically those anchoring Victor airways through high elevation terrain.

— Retain VORs required for military use.

— VORs outside of the CONUS were not considered for discontinuance under the VOR MON Implementation Program.

The following considerations were used to supplement the VOR MON criteria above:

— Only FAA owned/operated VORs were considered for discontinuance.

— Co-located DME and Tactical Air Navigation (TACAN) systems will generally be retained when the VOR service is terminated.

— Co-located communication services relocated or reconfigured to continue transmitting their services.

According to the FAA notice:

The FAA remains committed to the plan to retain an optimized network of VOR NAVAIDs. The MON will enable pilots to revert from Performance Based Navigation (PBN) to conventional navigation for approach, terminal and en route operations in the event of a GPS outage…

The VOR MON is designed to enable aircraft, having lost Global Navigation Satellite System (GNSS) service, to revert to conventional navigation procedures. The VOR MON is further designed to allow aircraft to proceed to a MON airport where an ILS or VOR approach procedure can be flown without the necessity of GPS, DME, ADF, or Surveillance. Of course, any airport with a suitable instrument approach may be used for landing, but the VOR MON assures that at least one airport will be within 100 NM.